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A complete analytical solution to the optimal reversal of a macrospin with easy-axis anisotropy is
presented. An optimal control path minimizing the energy cost of the reversal is identified and used to
derive the time-dependent direction and amplitude of the optimal switching field. The minimum energy
cost of the reversal scales inversely with the switching time for fast switching, follows exponential
asymptotics for slow switching, and reaches the lower limit proportional to the energy barrier between the
target states and to the damping parameter at infinitely long switching time. For a given switching time, the
energy cost is never smaller than that for a free macrospin. This limitation can be bypassed by adding a hard
anisotropy axis that activates the internal torque in the desired switching direction, thereby significantly
reducing the energy cost. A comparison between the calculated optimal control path and minimum energy
path reveals that optimal control does not translate to the minimization of the energy barrier but signifies
effective use of the system’s internal dynamics to aid the desired magnetic transition.
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Exact results concerning energy-efficient manipulation
of magnetic structure are highly important for fundamental
science and also for technological applications, as they
could help improve the performance of computing and
memory devices based on magnetic elements. Optimization
of magnetization switching in bistable nanomagnets by
tuning the external magnetic field has come under special
focus. It has been shown that a switching field can be
significantly reduced by application of a weak radio
frequency field pulse [1–11]. Magnetization reversal can
be achieved exclusively by a microwave field [2], whose
amplitude can be reduced provided that the frequency is
properly modulated [12–16]. Sun andWang [17] obtained a
theoretical limit of the minimal switching field and derived
an optimal constant-amplitude pulse yielding the shortest
switching time. Assuming a fixed magnitude but variable
direction of the switching field, Wang et al. [18] derived the
Euler-Lagrange equations for the fastest reversal of an
arbitrary Stoner particle. Barros et al. [19] developed a
general theoretical framework for the design of control field
pulses that minimize the energy cost of switching, calcu-
lated numerically the optimal switching field for a macro-
spin with easy-axis anisotropy, and derived analytically the
asymptotic properties of the reversal for infinitely long
switching time [20]. So far, theoretical studies of optimal
magnetization switching have imposed constraints on the
switching field or involved numerical simulations, but a
general analytical solution providing a transparent physical
picture is still missing.

Here we present a complete analytical solution to the
problem of energy-efficient switching of a nanomagnet
with easy-axis anisotropy. In contrast to previous studies,
our solution does not involve any assumptions about the
shape of the optimal switching pulse, therefore providing
a true theoretical limit to the energy cost of the switching
as a function of the switching time and establishing a link
between the optimal pulse and material properties. Our
results reveal new fundamental properties of the reversal,
including two asymptotic regimes of the energy cost
and the optimal switching time. The easy-axis anisotropy
cannot reduce the energy cost of switching compared
with the free-macrospin case, but this limitation can
be lifted by introducing a hard anisotropy axis in the
system. Energy-efficient magnetization switching in the
system with the hard axis illustrates the concept of
using the system’s internal dynamics to aid the desired
change in the magnetic structure, thereby offering a
new perspective on the design of magnetic memory
elements.
The efficiency of the magnetization reversal is enhanced

by minimizing the energy losses associated with the
generation of the switching field. Assuming an electric
circuit to be the source of the field and neglecting the
losses on radiation, the energy cost is defined by Joule
heating due to the resistance of the circuit. This is propor-
tional to the electric current square integrated over the
switching time. Taking into account the linear relationship
between the current magnitude and the strength of the
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generated field, we arrive at the cost functional proposed by
Barros et al. [19]:

Φ ¼
Z

T

0

jb⃗j2dt; ð1Þ

where T is the switching time and b⃗ is the generated time-
dependent magnetic field. The functional Φ needs to be
minimized subject to boundary conditions and a constraint
imposed by the equation of motion for the magnetic
moment, chosen here to be the zero-temperature Landau-
Lifshitz-Gilbert equation [21]

ð1þ α2Þ_s⃗ ¼ −γs⃗ × ðb⃗i þ b⃗Þ − αγs⃗ × ½s⃗ × ðb⃗i þ b⃗Þ�; ð2Þ

where α is the Gilbert damping, γ is the gyromagnetic ratio,
and s⃗ is the unit vector along the magnetic moment μ⃗. The
internal field is defined as b⃗i ¼ −μ−1∂E=∂s⃗; with E being
the energy of the system excluding the Zeeman term.
The constrained minimization of Φ can be formulated as

an unconstrained optimization by expressing b⃗ in terms of
the dynamical trajectory of the system as well as the
internal magnetic field,

b⃗ ¼ α

γ
_s⃗þ 1

γ
½s⃗ × _s⃗� − b⃗⊥i : ð3Þ

Here b⃗⊥i ≡ b⃗i − ðs⃗ · b⃗iÞs⃗, which is the transverse compo-
nent of b⃗i (the longitudinal component is not included, as
it does not affect the dynamics). On substituting (3) into
(1), the energy cost of the reversal becomes a functional of
the switching trajectory. By solving the Euler-Lagrange
equation, the trajectory minimizing the cost functional Φ
can be found. We denote this trajectory as the optimal
control path (OCP) so as to distinguish it from other
switching trajectories and to highlight its physical mean-
ing. The optimal switching pulse can be obtained from the
OCP using Eq. (3), thereby derived from the system’s
intrinsic magnetic properties, which are available via well-
established techniques [22]. A similar paradigm was used
to optimize electric current driving domain walls in
nanowires [23].
We apply the concept outlined above to a uniaxial single-

domain particle whose magnetic moment is reversed from
one stable orientation to the other (see Fig. 1). The energy
barrier between the stable states is assumed to be much
larger than the thermal energy. This model mimics, e.g., a
bit operation in a nanoscale magnetic memory element,
where strong magnetic anisotropy ensures stability of the
element against thermal fluctuations [24]. The internal
energy E of the system is defined by the anisotropy along
the z axis,

E ¼ −Ks2z ; ð4Þ

where K > 0 is the anisotropy constant. Euler-Lagrange
equations in spherical coordinates θ and ϕ (Fig. 1) read

τ20θ̈ ¼ α2

4ð1þ α2Þ2 sin 4θ; τ0 _ϕ ¼ cos θ
1þ α2

; ð5Þ

where the period of Larmor precession τ0 ¼ μð2γKÞ−1
defines the timescale. The boundary conditions θð0Þ ¼ 0,
θðTÞ ¼ π correspond to the transition between the energy
minima within the switching time T. Equation (5) for
θ is the well-known Sine-Gordon equation [25,26], whose
solutions are expressed by Jacobi elliptic functions [27,31].
The OCP described by Eq. (5) reveals the mechanism for
the reversal: The moment moves steadily from the initial
state upward the energy surface while precessing counter-
clockwise around the anisotropy axis until it reaches the
top of the energy barrier at t ¼ T=2. At this point, the
precession reverses its direction and the system slides down
to the target state minimum. This scenario was obtained
numerically by Barros et al. [19,20], but the exact ana-
lytical solution makes it possible to derive general proper-
ties of the OCP [27].
Substitution of the solution for θ and ϕ into Eq. (3)

results in the following expressions for the optimal switch-
ing field:

b⃗m ¼ bmffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p ðαe⃗θ þ e⃗ϕÞ; ð6Þ

FIG. 1. Calculated optimal control paths (OCPs) for the reversal
of a macrospin pointing along the unit vector s⃗. The initial and the
final states are at the north and the south poles of the unit sphere,
respectively. The damping factor α is 0.1. The switching time T is
10τ0 and 100τ0 for the paths shown with thick and thin green
lines, respectively. The external magnetic field b⃗m at t ¼ T=4,
t ¼ T=2, and t ¼ 3T=4 is shown for the shorter path with the
brown arrows.
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bm ¼ K

μp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
�
dn

�
t

pτ0ð1þ α2Þ
���� − α2p2

�

þαp sn

�
t

pτ0ð1þ α2Þ
���� − α2p2

��
; ð7Þ

where e⃗θ, e⃗ϕ are local time-dependent orthonormal vectors
in the directions of increasing θ, and ϕ, respectively (see
Fig. 1), while dnð:j:Þ and snð:j:Þ are Jacobi elliptic functions
[27,31] and p is a parameter implicitly defined through the
following equation: T ¼ 4τ0ð1þ α2ÞpKð−α2p2Þ, with
Kð:Þ being the complete elliptic integral of the first kind
[27,31]. Equation (6) signifies that the switching field
points in a specific fixed direction in the time-varying frame
of reference associated with the magnetic moment [17]
evolving according to Eq. (5). The orientation of the field is
such that its contribution to the precession around the
anisotropy axis is exactly zero, and the external pulse
contributes only to the part of motion that is relevant for
switching, i.e., progressive increase in θ. The optimal
orientation of the switching field can be obtained regardless
of optimization of the pulse amplitude; e.g., Eq. (6) still
holds for the constant field amplitude [17].
Equation (7) describes the optimal switching field

amplitude bm (see Fig. 2). When α ¼ 0, the amplitude is
time independent: bmjα¼0 ¼ π=ðγTÞ. Note that for zero α
there is no energy consumption by the magnetic moment
itself, but energy is still expended on the creation of the
switching field. We emphasize that the functional Φ
characterizes the energy spent by the external field source
and not the energy dissipated in the magnetic system.
For α > 0, bmðtÞ has a more complex structure, but the

symmetry bmð0Þ¼bmðT=2Þ¼bmðTÞ holds. Damping gives
rise to the internal torque in the polar direction. This
torque—produced by the anisotropy field—counteracts
the switching motion before crossing the equator, and a

maximum in the switching field forms at t ¼ T=4 so as to
neutralize this effect (see Fig. 2). After the trajectory has
crossed the equator at t ¼ T=2 [27], the internal torque aids
the switching, and bm reaches a minimum at t ¼ 3T=4. The
position of the maximum and the minimum of bmðtÞ
coincides with that of the extrema of the polar component
of the internal torque (see Fig. 2). Note that the external
field, although reduced compared to that before barrier
crossing, is still nonzero in general: Some field needs to be
applied in order to terminate the reversal on time. However,
for long enough switching time, T ≫ ðαþ 1=αÞτ0, damp-
ing alone is sufficient to complete the switching, and
virtually no field needs to be applied after crossing the
energy barrier (see black curve in Fig. 2). Although the
magnitude of neither maximum bmax nor minimum bmin of
the switching field amplitude can be described in terms of
elementary functions in a general case, the difference
between them is always

Δb ¼ bmax − bmin ¼
2αK

μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p : ð8Þ

Moreover, the average amplitude bav can be computed
analytically, leading to an exact relation

bav ¼
1

T

Z
T

0

bmðtÞdt ¼
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

γT
; ð9Þ

which demonstrates that overall larger fields are required to
terminate the reversal in a shorter time, as expected.
Interestingly, bav does not depend on the magnetic poten-
tial. From Eqs. (8) and (9) it follows that Δb=bav → 0 for
T → 0; i.e., a decrease in the switching time progressively
makes bmðtÞ resemble a time-independent function [27].
Equation (7) recovers the result of Barros et al. for

T → ∞—see Eq. (13) in Ref. [20]—as well as that of Sun
and Wang for α ¼ 0—see Eqs. (7) and (9) in Ref. [17].
Additionally, for T ≪ ðαþ 1=αÞτ0 the pulse amplitude
simplifies to bm ≈ bav þ Δb sin ð2πt=TÞ=2.
Substitution of Eq. (7) into Eq. (1) leads to the following

formula for the minimum energy cost:

Φm ¼ 2K½2Eð−α2p2Þ −Kð−α2p2Þ�
γμp

; ð10Þ

where Eð:Þ is the complete elliptic integral of the second
kind [27,31]. According to (10), Φm is a monotonically
decreasing (increasing) function of the switching time T
(damping parameter α), as illustrated in Fig. 3. Energy cost
as a function of the switching time has two asymptotic
regimes corresponding to fast and slow switching. For the
short switching time, the magnetic potential becomes
irrelevant, and ΦmðTÞ is described by a power law:

FIG. 2. Amplitude of the switching field as a function of time
for T ¼ 100τ0 and several values of α (solid lines). Dashed lines
show αb⊥i , which is proportional to the polar component of the
torque generated by the internal field.
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Φm ≈
π2ð1þ α2Þ

γ2T
þOðTÞ; T ≪ ðαþ 1=αÞτ0; ð11Þ

The leading term in Eq. (11) specifically recovers the
potential-free case. The power-law regime changes to an
exponential dependence on T for the long switching time:

Φm ≈Φ∞

�
1þ 4exp

�
−

αT
2τ0ð1þα2Þ

��
; T ≫ ðαþ 1=αÞτ0;

ð12Þ

which particularly demonstrates that, for a given anisotropy
constant and damping parameter, the lower limit of the
energy cost is Φ∞ ≡ 4αK=ðγμÞ−1, as predicted in [20].
Strictly speaking, this limit is reached at infinitely long
switching time, but Eq. (12) makes it possible to analyze to
what extent the limit can be approached within finite T.
In particular, termination of the reversal within time
Tε ¼ 2 ln ð4=εÞ½αþ 1=α�τ0 corresponds to the energy cost
that is only by a fraction of ε < 1 larger than Φ∞:
ΦmðTεÞ=Φ∞ ¼ 1þ ε. Therefore, Tε has a meaning of
optimal switching time in a sense that increase in T beyond
Tε does not lead to a significant gain in energy efficiency
(see Fig. 3).
Analysis of Eq. (10) shows that for a given switching

time T, the energy cost is never smaller than that in a
zero-potential case: ΦmðTÞ ≥ Φ0ðTÞ≡ π2ð1þ α2Þ=ðγ2TÞ,
where the equality is reached for α ¼ 0. In other words, the
internal energy obstructs the reversal in a system with easy-
axis anisotropy, and the purpose of the pulse optimization
in this case is to minimize the unfavorable effect caused by
the magnetic potential. To be able to use the internal energy

landscape to aid the switching process, additional terms in
the magnetic potential are necessary. We have found that
the energy cost can be reduced by adding a hard-axis
anisotropy to the system. The internal energy Ẽ of such a
biaxial anisotropy system can be written as

Ẽ ¼ −Ks2y þ Khs2z ; ð13Þ

where the easy axis and the hard axis are along the y and z
directions, respectively. The hard-axis anisotropy constant
Kh is taken to be 10 times larger than K. This Kh ≫ K
regime can be realized thanks to the large demagnetizing
field [32] in thin flat elongated nanoelements. Such
structures are used, e.g., as single bits in in-plane memory
designs [24], or as elements of artificial spin ice systems
[33,34]. The OCP between the energy minima at sy ¼ �1

was obtained by a direct numerical minimization of the
energy cost functional for the switching time T ¼ 0.32τ0
and damping α ¼ 0. Surprisingly, the corresponding
energy cost Φ̃m turned out to be an order of magnitude
smaller than that for the reversal with the same switching
time and damping in the system with zero magnetic
potential: Φ̃m=Φ0 ≈ 0.088. This phenomenon can be
explained by the distribution of the internal torque; see
Fig. 4. Because of the hard axis, there is a region in the
configuration space where the system’s internal torque
systematically points in the desired switching direction.
By placing the switching path into this region, the optimal
control efficiently exploits the internal torque to assist the
switching. The external pulse has a minimal influence; its
purpose is only to trigger the switching by directing the
system toward the particular sector in the configuration
space where the internal dynamics picks the system up and
drags it to the desired target state. This effect was also
noticed earlier for in-plane magnetized Co films [35] and
Co nanoclusters characterized by complex magnetic
anisotropy [36].
Finally, we compare our OCP with another distinguished

path in the configuration space—the minimum energy path
(MEP). AnMEP connecting two stable states is a path lying
lowermost on the energy surface, and the point of highest
energy along the MEP defines the energy barrier within
harmonic rate theories [37–39]. The MEP for the magneti-
zation reversal in the biaxial system is the shortest path
connecting the energy minima through the saddle point at
θ ¼ π=2, ϕ ¼ π (see Fig. 4). This path is very different
from the calculated OCP, which demonstrates a more
complex structure. To emphazise the difference between
MEP and OCP, we note that the OCP is a dynamical
trajectory defined by the parameters of the equation of
motion, whereas the MEP is determined entirely by the
energy surface of the system. Since the OCP does not even
pass through the saddle point, the energy maximum along
the OCP is higher than the energy barrier derived from the
MEP (see the inset in Fig. 4). This result means that optimal

FIG. 3. Minimum energy cost of magnetization switching as a
function of the inverse of the switching time. Dashed (dotted)
lines show long (infinite) switching time asymptotics. Thin
vertical lines indicate switching time Tε, for which the minimum
energy cost is ε ¼ 10% larger than the infinite switching time
limit Φ∞.
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control of a magnetic transition does not necessarily lead to
a path that minimizes the energy barrier between the target
states. Following an OCP involves rotation of magnetic
moments in such a way that the influence of the external
stimulus is minimized, but the system’s internal dynamics
is effectively used to aid the magnetic transition.
Experimental realization of optimal control pulses, such

as the one given by Eqs. (6) and (7), is challenging but
still feasible within current technology for pulse shaping
[40–45]. Note also that the optimal switching protocol
derived here is quite stable with respect to thermal
fluctuations and material parameter perturbations, as
confirmed by our spin dynamics simulations [27].
In conclusion, we have presented an exact analytical

solution to the problem of optimal switching of a nano-
magnet via the coherent magnetization rotation mode used
in most modern magnetic memories. The easy-axis
anisotropy alone can only increase the energy cost of
the switching compared to the free-macrospin case, but this
effect is minimized by following the OCP. The system’s
internal torque can be used to aid the switching by
introducing a hard anisotropy axis. Our results deepen
the understanding of the optimal control of magnetization
switching in nanoparticles and provide guiding principles
for the design of energy-efficient digital devices based on
magnetic elements.
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