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Abstract
Motivated by recent experimental polarized neutron results, we present a numerical micromagnetic
study of the interfacial (intergrain) Dzyaloshinskii–Moriya interaction (DMI) in nanocrystalline
terbium.We demonstrate that the DMI-induced spin misalignment between adjacent nanograins is
the reason for the formation of the asymmetric positive-negative pattern seen in polarized neutron
scattering experiments. Analysis of the remagnetization process suggests the generic impact of the
DMI on the macroscopic magnetic parameters of polycrystalline defect-rich materials.

1. Introduction

Originating from the relativistic spin–orbit coupling, the Dzyaloshinskii–Moriya interaction (DMI) is an
antisymmetric contribution to the exchange energy between spins and plays a crucial role in a large variety of
magnetic materials [1, 2]. In particular, in systems with a noncentrosymmetric crystal structure (lack of
inversion symmetry), the DMI is essential for the formation of complex magnetization configurations, e.g.
vortices, spin spirals, and skyrmions [3–9]. However, the noncentrosymmetric nature of the underlying
crystal lattice is not the only mechanism by which antisymmetric exchange interactions are generated. In
fact, it was predicted by Arrott [10] that the DMI may be present in the vicinity of lattice defects of a crystal,
where local breaking of structural inversion symmetry may take place. Besides, several other mechanisms
such as the spin-orbit scattering of conduction electrons by nonmagnetic impurities in spin-glass alloys [11],
the presence of structural inhomogeneities with an asymmetric distribution of the chemical composition in
amorphous ferrimagnets [12], applied strain gradients [13, 14], or the inversion-symmetry breaking at the
interfaces of thin films [15] are responsible for the appearance of antisymmetric exchange and the
concomitant complex spin textures.

From the foregoing it becomes clear that a very important and broad class of materials which might
exhibit DMI are polycrystalline magnets. One of the most prominent microstructural defects in
polycrystalline materials are grain boundaries, which may be seen as two-dimensional interfaces separating
crystallites of different crystallographic orientation. Consequently, DMI-induced changes in the
magnetization configuration of such materials might be expected, in particular, in nanocrystalline magnets,
which are polycrystalline materials with an average grain size Dcr of a few nanometers. Since the volume
fraction of grain boundaries scales as D−1

cr , the effect should be largest for the smallest grain size. Indeed,
analytical calculations performed in the framework of the continuum theory of micromagnetics have shown
that the DMI should qualitatively affect the magnetization distribution and should manifest as an asymmetry
of the polarized magnetic neutron scattering cross section [16, 17]. Recent neutron measurements on
nanocrystalline terbium (Tb) have confirmed this important prediction [18].

The signature of defect-induced DMI is an asymmetric (positive-negative) pattern in the difference
between polarized spin-up and spin-down neutron scattering cross sections (see figure 1(a)). This difference
signal corresponds to chiral-type magnetization structures appearing in polycrystalline materials, even with a
centrosymmetric crystal structure. In such crystals, the symmetry breaking might appear in the vicinity of
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Figure 1. (a) Experimental polarized neutron data of nanocrystalline Tb at T= 100K and at an applied (horizontal) magnetic
field of B= 5T [18]. Shown is the difference between flipper-on (dΣ−/dΩ) and flipper-off (dΣ+/dΩ) small-angle neutron
scattering cross sections. Experimental magnetization data are presented in the lower left corner. (b) Simulated hysteresis loops
for a system composed of 20nm-sized Tb crystallites and for different DMI coefficient values. Solid lines—for a system with all
interparticle coefficients Dmes

SW > 0. Reduced DMI constants shown in the legend are defined as dDMI = Dmes
SW /D0, where

D0 = 1.6× 10−12 erg (1erg= 10−7 J) (compare to equation (7) in the appendix). Dashed loop corresponds to a system in which
the DMI coefficients randomly change sign for different particle pairs (Dmes

SW =±1.6× 10−11 erg). (inset) Dependence of the
reduced remanence jr =Mz(H= 0)/Ms on the DMI value: squares—systems with Dmes

SW > 0; open triangle—a system with
Dmes
SW =±1.6× 10−11 erg. (c) Micromagnetic simulation results for the Fourier transforms of the magnetization components and

for the resulting chiral function 2iχ (equation (3)) for a system composed of 20nm-sized crystallites with all positive DMI
coefficients Dmes

SW =+1.6× 10−11 erg. Pixels in the corners of the images have q= 0.42nm−1 (logarithmic color scales).

the grain interfaces, resulting in a DMI between different grains. We note that the interlayer DMI effect has
already been studied theoretically [19], and recently this idea has received an experimental validation [20].
As mentioned already above, considering that polycrystalline bulk ferromagnets represent a very broad and
highly important class of materials (e.g. permanent magnets, magnetic steels, nanocomposites),
micromagnetic simulations of the magnetization structures of such materials which include the DMI—the
interaction that could lead to an asymmetry in the polarized neutron scattering cross section—are highly
desirable to further understand this generic phenomenon.

The present study is organized as follows: First, using a Stoner–Wohlfarth (SW) model, we summarize
the modeling results obtained without the DMI. These simulations serve the purpose to understand the very
basic behavior of nanocrystalline Tb, which possesses a relatively complex magnetic anisotropy energy.
Second, we incorporate an interfacial DMI between the individual SW crystallites into the model, because it
is in this system (without an internal magnetization structure of each individual crystallite) where we expect
to obtain the strongest effect of the DMI interaction on the small-angle neutron scattering (SANS) cross
section. At the final stage, we discuss the results of full-scale simulations of a three-dimensional system with
large crystallites taking additionally into account the isotropic exchange and the magnetodipolar energies.

In all of the above steps, we have computed the three-dimensional magnetization vector field and the
concomitant magnetic neutron scattering signal (the so-called chiral function). Originally, we have
developed the micromagnetic algorithm used in this study and the corresponding software to simulate the
magnetization-reversal processes of magnetic nanocomposites. These multiphase systems are characterized
by site-dependent magnetic parameters and interactions, and the software can be easily adapted to the
present simulations of nanocrystalline Tb, which we model as being composed of a grain and a
grain-boundary phase. Details about the micromagnetic simulation methodology, in particular about the
microstructure generation, the implementation of the various energy contributions, and the computation of
the magnetic neutron scattering cross section, can be found in [9, 21].

2. Modeling without DMI

First, to understand the basic behavior of Tb, we have performed micromagnetic simulations without the
DMI. For this purpose, we have neglected the intergrain exchange interaction, because the experimental
procedure used to obtain the nanocrystalline material under study (inert-gas condensation) leads to the
formation of separated nanosized crystallites already in the gas phase, which are then pressed together to
obtain a consolidated powder pellet [18]. The resulting sample is expected to have highly disturbed intergrain
boundaries, which should prevent the direct (symmetric) exchange coupling between the constituting grains.
Furthermore, we have neglected the magnetodipolar interparticle interaction in this SW model, because the
corresponding field is small compared to the large out-of-plane anisotropy field of Tb (a few tens of Tesla).

The relation between the symmetric and asymmetric parts of the exchange interaction in polycrystalline
defect-rich magnetic materials requires a special discussion. It is worth noting that even systems with a
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Figure 2. Qualitative variation of the symmetric (J, red line) and antisymmteric (D, black line) exchange parameters as a function
of the interface thickness between two magnetic nanocrystallites (adapted with permission from [22]). The shaded area represents
the interface-thickness distribution function.

simpler geometry, namely magnetic layers separated by a nonmagnetic spacer, exhibit a complex coupling
behavior [22]. In a first approximation, such a layered microstructure can serve as a model system for
describing the exchange interaction between adjacent crystallites separated by a nonmagnetic interface (grain
boundary). According to analytical calculations [22] both symmetrical exchange and DMI coefficients
depend on the thickness of the nonmagnetic layer and show an oscillatory behavior, resembling the
characteristic feature of the Ruderman–Kittel–Kasuya–Yosida interaction, but having a different nature (see
figure 2). Additionally, it turns out, and this is extremely important for our model, that the exchange
coefficients J and D exhibit different decay laws as functions of the distance between ferromagnetic layers: an
inverse square law for J and an inverse law for D. As a consequence, for a given average interface thickness,
the symmetric exchange interaction between grains might indeed be neglected relative to the DMI strength
(as is done in our simulations).

Single-domain behavior of Tb grains during the whole magnetization reversal process was observed for
crystallites with a diameter below Dcr ≲ 30nm. Larger grains exhibit considerable deviations from the
single-domain state. Such a relatively small critical single-domain size is due to the high magnetization of Tb
(see appendix), which leads to a very large demagnetizing field inside a grain in its homogeneous
magnetization state, thus, favoring a transition to an inhomogeneous spin configuration. These findings
allow us to apply a SW-like model (i.e. to use macrospins to represent the Tb crystallites) to a system of
particles with a size smaller than 30nm.

3. Modeling with DMI

To take into account the intergrain DMI in mesoscopic micromagnetic simulations, Emes
DM, we have introduced

the following contribution to the total micromagnetic energy, which is of the same functional form as the
DMI energy between atomic magnetic moments EatDM, namely:

EatDM =Dat · (Si × Sj), (1)

Emes
DM =Dmes · (mi ×mj), (2)

where the effective micromagnetic DMI vector Dmes is parallel to the vector connecting the ith and the jth
magnetic moment. We note that the relation between the atomic and mesoscopic DMI constants
(magnitudes of the DMI vectors) requires special consideration, which is detailed in the appendix.

Simulations of magnetization reversal in an ensemble of spherical single-domain crystallites with
Dcr = 20nm including the DMI have also been performed using the SW-like model. Interparticle exchange
and magnetodipolar interactions were neglected in this case for the reasons described above. Periodic
boundary conditions were used. The total number of crystallites in our simulations is Ncr = 12500, and the
effective mesoscopic DMI parameter for this system was varied from zero to |Dmes

SW |= 1.6× 10−11 erg. When
not stated otherwise, DMI coefficients for all particle pairs are positive. Note that the DMI values given here
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correspond to the total DMI energy between the 20nm large crystallites, and thus cannot be compared
directly to the (much smaller) interatomic DMI coefficients.

Hysteresis loops are presented in figure 1(b) and demonstrate that the magnetization reversal process
substantially depends on the value of the effective DMI coefficient. A significant reduction of the reduced
remanence jr with increasing DMI shown in the inset—from jr = 0.75 for Dmes

SW = 0.64× 10−11 erg to
jr = 0.48 for Dmes

SW = 1.6× 10−11 erg—can be explained by the tendency of the DMI to form spiral structures,
which are inherently inhomogeneous and thus should reduce the remanence. Note that the remanence for a
system without DMI is much larger than jr = 0.5, because the anisotropy symmetry of the Tb grains is very
much different from the simple uniaxial anisotropy assumed in the standard SW model. The finding of an
DMI-induced remanence reduction in nanocrystalline materials might be of relevance for the development
of permanent magnets.

For comparison with the experimental polarized neutron data in figure 1(a), we have computed the
chiral function χ(q), which for the scattering geometry where the externally applied magnetic field B is
perpendicular to the neutron beam can be expressed as [23]:

χ(q) = (M̃xM̃
∗
y − M̃∗

x M̃y)cos
2 θ− (M̃xM̃

∗
z − M̃∗

x M̃z) sinθ cosθ, (3)

where the M̃x,y,z(q) represent the Fourier transforms of the Cartesian magnetization componentsMx,y,z(r),
and the asterisk ‘∗’ marks the complex-conjugated quantity. The (real-valued) quantity 2iχ, evaluated in the
plane of the two-dimensional detector (corresponding to qx = 0), can be directly compared to the
experimental neutron data shown in figure 1(a). We also emphasize that polarized neutron scattering is one
of the few methods that is able to directly measure net chirality in a magnetic system. The squared
amplitudes of the numerically-computed magnetization Fourier components along with the chiral function
are presented in figure 1(c). Note that here all DMI coefficients are positive. Comparison of the computed
patterns for 2iχ with the experimental data demonstrates a good qualitative agreement. Therefore, we
conclude that the presence of DMI with either positive or negative sign (this is a matter of sign convention)
results in magnetization configurations that give rise to the experimentally observed neutron patterns.

In order to further support the last statement, additional modeling has been carried out for a system
where one half of the neighboring crystallite pairs are coupled via a positive DMI coefficient, while the other
half are coupled via a negative one. The hysteresis loop for this case is presented in figure 1(b) as the dashed
line. While the difference between simulated loops for the cases when all the Dmes

SW > 0 and all the Dmes
SW are

randomly changing their sign is minor, the polarized neutron patterns for these two situations are
significantly different: a system with equal fractions of positive and negative DMI coefficients demonstrates
the complete lack of the chiral function. With all-positive DMI coefficients we artificially model the
population asymmetry of the left-right helices experimentally observed in systems lacking inversion
symmetry on the interfaces [24, 25].

Returning to the discussion of the oscillatory behavior of the DMI coefficient as a function of the
distance between the magnetic layers [22], we propose the following reason for the asymmetry in the
population of helices assumed above, i.e. for the choice of all-positive DMI coefficients in the simulations. As
a result of the sample synthesis process, the thickness of the interfaces between the grains exhibit some
distribution, whose mean value and width strongly depend on the process parameters. If the interface-width
distribution is narrow enough (less than or about half of the quasiperiod of the oscillatory dependence of D
on the interface thickness, as illustrated in figure 2), then most of its part can fit into predominantly positive
(or negative) values for the DMI coefficient. In this case, the formation of right-handed (left-handed) helices
will be strongly preferred, leading to the appearance of a macroscopic chirality.

4. Simulations of systems with large grains

As explained above, larger crystallites may possess a complicated internal magnetization structure, so that
simulations where each crystallite is adequately discretized in order to resolve this magnetization distribution
are clearly necessary. In this case, we have used a cubical simulation box with a side length of 170nm,
subdivided into∼2× 105 mesh elements. Depending on their size, the total number of crystallites varies
from∼700 for a 20nm crystallite sample to 26 for a 60nm system. Examples of generated microstructures of
polycrystalline Tb with various crystallite sizes are shown in the upper row of figure 3(a).

In these simulations, we have used an exchange-stiffness constant of Aex = 0.38× 10−6 ergcm−1 between
mesh elements belonging to the same crystallite. This Aex value was obtained by an additional procedure of
mapping the atomistic magnetic parameters of Tb on a simple cubic lattice (chosen for simplicity) and fitting
the obtained (by micromagnetic simulations) Bloch-wall profile to the well-known analytical solution. This
procedure is necessary since there is no reliable analytical transformation from atomistic to mesoscopic
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Figure 3. (a) Examples of generated structures used in the micromagnetic modeling of nanocrystalline Tb with crystallize sizes of
20, 40, and 60nm along with the corresponding chiral functions 2iχ at remanence (smoothed for better visibility, pixels in the
corners have q= 2.8nm−1, logarithmic color scale). (b) Calculated hysteresis loops of nanocrystalline Tb for various grain sizes
(averages over eight geometrical realizations are presented). For this set of calculations, the DMI coefficient between neighboring
mesh elements belonging to different grains is Dmes

mm = 3.6× 10−13 erg= 10Dmes
0 (compare to equation (8) in the appendix).

(c) Example for a magnetization distribution at the boundary of a 60nm-sized Tb grain at remanence. The depicted grain is a
part of a system composed of many crystallites (see the upper row of subpanel (a)).

parameters. The atomistic exchange constant was estimated from the Curie temperature of Tb (see
appendix). As before, the exchange coupling between different crystallites was neglected. On the other hand,
the DMI is expected to play an important role via the formation of noncentrosymmetric spin structures at
the interfaces between crystallites, in this way leading to a nonzero chiral function. Hence, the DMI energy
term (equation (2)) was added for the mesh-element pairs for which the elements i and j belong to different
crystallites. The magnetodipolar interaction was also taken into account and periodic boundary conditions
were used. In these full-scale micromagnetic simulations, we define the reference DMI coefficient between
mesh elements as Dmes

0 = 3.6× 10−14 erg.
For every set of structural and magnetic parameters, 8 different realizations of the crystalline

microstructure were simulated. Hysteresis loops averaged over these configurations are shown in figure 3(b).
While the remanence values and the approach-to-saturation behavior are very similar for all samples, the
coercivity is strongly dependent on the crystallite size, being two times larger for a system with Dcr = 20nm
as compared to the case of Dcr = 60nm. This tendency is qualitatively the same as for the loops obtained
without DMI (data not shown).

The chiral function 2iχ at remanence (figure 3(a)) substantially changes with the crystallite size, which is
in stark contrast to the corresponding magnetization value (remanence) that is almost size-independent
(figure 3(b)). This observation demonstrates that the amount of information available by SANS, which is
able to reveal the details of the spin structure in the bulk and on a mesoscopic length scale, is much larger
than the information provided by integral (averaging) methods such as magnetometry. Importantly, in the
full-scale micromagnetic simulations we find the same type of chiral function as for the SW-like model
(compare figure 1). When the average grain size increases, the asymmetry of the pattern becomes less
pronounced, since the ratio of the number of magnetic moments located at grain boundaries and the
number of moments inside a crystallite decreases, thus, decreasing the relative importance of the DMI.

Additionally, we have studied the influence of themagnitude of the DMI value on the magnetization
reversal and the corresponding SANS pattern (figure 4). For this purpose, hysteresis loops of a system
composed of 40nm-sized grains have been simulated for a range of DMI coefficients that are an order of
magnitude smaller than for the simulation results shown in figure 3(b) (Dmes

mm = 3.6× 10−14 erg= Dmes
0 ).

Due to this smaller value of the DMI constant, the remanence for the loops shown in figure 4(a) is slightly
larger than for those presented in figure 3(b) (light-blue curve), because a decreasing DMI leads to the
reduction of the spin misalignment at the intergrain interfaces. The main result of this set of simulations is
the absence of a statistically-relevant difference between magnetization curves for DMI constants in the
range dmes

mm = Dmes
mm/D

mes
0 = 0–1.0.

On the other hand, the chiral function 2iχ shown in figure 4(b) demonstrates a qualitative difference
between systems with dmes

mm = 1 and dmes
mm = 10 (see figure 3(a), 40nm grain size data) and without DMI

(dmes
mm = 0). Namely, the strong contrast of the positive-negative pattern of 2iχ of the sample with the largest

interfacial DMI decreases in the system with the reduced DMI and completely disappears without this
interaction. Note that the corresponding pattern is still clearly visible for dmes

mm = 1, where the hysteresis loop
is identical to that of the system without DMI (figure 4(a)). This observation confirms once more the power
of the SANS method to reveal fine features of the bulk magnetization structure.
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Figure 4. (a) Simulated hysteresis loops (average over eight geometrical realizations) of polycrystalline Tb consisting of
40nm-sized grains for various normalized DMI coefficients dmes

mm = Dmes
mm/D

mes
0 (see inset). (b) Corresponding chiral functions

2iχ at remanence. Pixels in the corners have q= 2.8nm−1 (logarithmic color scale). (c) Magnetization distributions (shifted for
better visibility) on the interface between two grains in a system composed of 40nm crystallites without and with DMI. The
magnetization component (multiplied by a factor of 3) perpendicular to the anisotropy-axis direction nearest to the
magnetization direction is shown for both cases.

Our simulations also allow to understand the effect of the DMI on the details of the magnetization
configuration, in particular, on the correlation of magnetization states in neighboring grains. The
magnetization distribution in the polycrystalline system under study when the interfacial DMI is included
(and competes with the other interactions) is very complex, as it can be seen for the example displayed in
figure 3(c). We emphasize that in figure 3(c) only spins in the near-vicinity of the grain boundaries are
displayed, but that the interior regions of the grains are also nonuniformly magnetized. To understand the
changes in the spin structure due to the presence of the DMI, which here is an interface-mediated interaction,
we have compared the orientations of magnetic moments at the interface between crystallites for identical
systems without and with DMI. It turns out that these changes are not only quantitative, but also qualitative,
as it is presented in figure 4(c). Here, we show the influence of the DMI on the magnetization vector field at
the interface between adjacent grains. In the system without DMI, there exists a kind of magnetic domain
boundary separating two domains with magnetization orientations along two different directions of easy
axes (we remind that there exist a six-fold anisotropy in the easy plane of Tb, corresponding to three easy
axes in this plane). On the contrary, for the system with DMI, we do not observe any sharply-defined domain
wall, but find strong deviations from the easy axes on the entire intergrain interface.

5. Summary and conclusion

We have developed a micromagnetic model of nanocrystalline Tb with a strong easy-plane magnetic
anisotropy and an additional sixth-fold anisotropy within this easy plane. It has been shown that the
intergrain (interfacial) DMI which is incorporated into our approach results in an additional spin
misalignment between adjacent nanocrystalline Tb grains. The magnetization reversal processes has been
studied in detail both in frames of a SW-like model (for small grain sizes) and using full-scale micromagnetic
simulations (for systems with larger crystallite sizes where the internal magnetization distribution is
important). Both approaches have demonstrated that the DMI has a pronounced effect on the macroscopic
magnetic parameters and that it is at the origin of the asymmetric positive-negative pattern of the polarized
neutron scattering signal observed experimentally. These results underline the generic role of the DMI for the
magnetism of defect-rich polycrystalline magnets.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Appendix. Materials parameters and relations between the various DMI coefficients

Terbium crystallizes in a hexagonal closed-packed (HCP) structure with lattice constants of a= 3.6055 Å and
c= 5.6966 Å (c/a∼= 1.58) [26]. Its magnetism originates from the electrons in the partially filled 4f shell,
which give rise to localized magnetic moments that couple via the long-range Ruderman–Kittel–
Kasuya–Yosida (RKKY) interaction involving the conduction electrons. The Tb3+ ion has a spin angular
momentum of S= 3 and an orbital angular momentum of L= 3, which results in a highly anisotropic
electronic charge cloud and in a concomitant complex magnetocrystalline anisotropy. Below Tc = 220K, the
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magnetic moments are confined by an extremely large magnetocrystalline anisotropy (of strength
K1 = 6× 108 ergcm−3) into the basal plane of the HCP lattice [27]. Within the basal plane, there exists an
additional six-fold anisotropy, with a corresponding (weaker) anisotropy constant of
K6
6 = 0.6× 106 ergcm−3. In the simulations, we used the following expression for the anisotropy-energy

density of Tb:

ϵA = K1 cos
2(α)+K 6

6 sin
2(α)cos(6β), (4)

where α and β are the angles of the magnetization with respect to the c and a axes of the HCP crystal.
The difference in magnitude between the two anisotropy constants and the polycrystalline nature of the

sample may then qualitatively explain the hard-soft behavior of the experimentally obtained magnetization
curve (see figure 1(a)). Due to the large K1 value it is not possible to produce a significant tilting of magnetic
moments out of the easy plane with available laboratory magnetic fields (say, fields smaller than 10T). On
the other hand, within the easy plane, a magnetic moment has to overcome only a relatively low energy
barrier produced by a moderate anisotropy K6

6 (compared to K1), so that its orientation can be reversed
within this easy plane already by a relatively small negative field. This scenario then effectively leads to a kind
of hard-soft behavior of the experimental hysteresis loop.

The experimental determination of the saturation magnetization of nanocrystalline Tb is challenging due
to the extremely large anisotropy, so that for the micromagnetic simulations the saturation magnetization
value at 100K of single crystalline Tb was taken,Ms

∼= 2354kAm−1 [28]. The exchange constant
has been estimated from the well-known mean-field relation Jex = 3kBTc/(ϵz) [29, 30], where
kB = 1.381× 10−16 ergK−1, z is the number of nearest neighbors, and ε is a correction factor of the order of
unity arising from the consideration of spin waves. In this way, we find Jex = 9.1× 10−15 erg.

The relation between the DMI coefficients used in our mesoscopic simulations (Dmes
SW and Dmes

mm) and the
corresponding atomistic values (Dat) can be established by estimating the DMI energy Eg−g

DM of the interface
between two grains as:

Eg−g
DM =Dmes · (mi ×mj) = Ng−gDat · (Si × Sj), (5)

wheremi and Si denote the unit vectors of, respectively, the magnetic moment of the ith crystallite and of the
spin of the ith atom at the interface. This yields a simple relation between the average atomic DMI constant
Dat and its mesoscopic counterpart Dmes using the number Ng−g of atoms at the interface:

Dat =
Dmes

Ng−g
=

Dmes

nsurfSg−g
. (6)

Here, the atomic surface density is defined as nsurf = nat/̄l2, where nat = 2 is the number of atoms in the
elementary HCP unit cell, and l̄∼= 4.30 Å is the corresponding average cell size for Tb. The average surface
area of the intergrain interfaces, Sg−g, can be computed from the average number of nearest neighboring
grains, ⟨kav⟩ ∼= 12.6, as Sg−g = 4π r2g/⟨kav⟩, where rg denotes the grain’s radius.

The conversion to the often employed DMI coefficient Dsed, which has the unit of a surface energy density
(1ergcm−2 = 1mJm−2), is obtained by a similar relation using the interface energy:

Eg−g
DM(SW) ≡ Dmes

SW = DsedSg−g. (7)

For the case of uniformly magnetized 20nm-sized Stoner–Wohlfarth particles (and using
Eg−g
DM(SW) = 1.6× 10−12 erg and nsurf ∼= 1.08× 1015 cm−2), we obtain Dat ∼= 1.48× 10−15 erg and

Dsed ∼= 1.60ergcm−2.
In the full-scale micromagnetic calculations (with discretized grains), we deal with

Eg−g
DM(mm) = Ng−g

meshD
mes
0 , (8)

where the number of mesh elements per interface area for the 20nm-sized grain is
Ng−g

mesh = Sg−g/(π r2mesh)
∼= 14 (using 2rmesh = 3nm). In this case, for Dmes

0 = 3.6× 10−14 erg and hence

Eg−g
DM(mm) = 5.0× 10−13 erg, the DMI coefficients corresponding to our micromagnetic simulations are

Dat ∼= 4.64× 10−16 erg and Dsed ∼= 0.50ergcm−2. In [18], the value for the DMI coefficient of nanocrystalline
Tb has been found as: Dmes

Tb = 0.45mJm−2 = 0.45ergcm−2.
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