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We suggest an algorithm which allows single-stage direct Langevin dynamics simulations of transitions
over arbitrarily high energy barriers. For this purpose, we propose a concept of the energy-dependent
temperature (EDT): near the energy minima this temperature is high, but it tends toward room temperature
for energies approaching the barrier value. In the resulting algorithm simulation time required for the
computation of the escape rate over the barrier does not increase with barrier height. Switching times
computed via our EDT algorithm agree very well with those obtained with the forward flux sampling
(FFS). As the simulation time required by our method does not increase with the energy barrier, we achieve
a very large speed-up compared even to our strongly optimized version of FFS (and all other multistage
algorithms). In addition, our approach is free from the instability occurring in all multistage “climbing”
methods where a product of a large number of transition probabilities between the interfaces must be
computed.
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Introduction.—Studies of systems with many mestasta-
ble states separated by energy barriers and evaluation of
escape rates Γ over these barriers are highly important tasks
arising in many areas of physics, chemistry, molecular
biology, and material science by studying, e.g., catalytic
reactions, diffusion in solids, phase transitions, information
lifetime, etc. [1–8]. This task is much more difficult than
the computation of the energy barrier height ΔE [3,9–12],
because the system dynamics in the vicinity of the saddle
point is very complicated.
The simplest analytical formula for Γ—the Arrhenius

law Γ ¼ νatt expðΔE=kBTÞ (νatt being the “attempt
frequency”)—has a fundamental drawback [13,14], as it
does not include the system damping. The most advanced
analytical expression for Γ for arbitrary damping was
derived in Ref. [15]. In magnetism, the formalism from
Ref. [15] was successfully applied to transitions between
two energy minima of a single-domain particle in
Refs. [14,16,17]. However, an analytical approach cannot
be used for strongly interacting many-particle systems (or
continuous bodies); an example of such systems is mag-
netic particles with sizes larger than the micromagnetic
length [18] which have substantially nonuniform magneti-
zation states. Hence, general numerical methods for the
evaluation of Γ are clearly necessary.
Straightforward Langevin dynamics (LD) is suitable for

small barriers only (ΔE=kBT ≤ 10), because its simulation
time grows exponentially with ΔE. Hence, most methods
for studying transitions over high barriers are based on a
gradual “climbing” towards the saddle point starting from
an energy minimum. Among them, the most successful is

the forward flux sampling (FFS) [19–22]. In FFS the phase
space between the energy minima is divided into N
interfaces fλig and the transition probabilities wðλi →
λiþ1Þ≡ wi between the interfaces are computed. The
escape rate is then obtained by multiplying the product
of all wi’s by the flux from the starting minimum through
the first interface. In micromagnetics, FFS was applied for
magnetization switching in columnar structures [23–25]
and skyrmions [26].
Computational time for one FFS run is proportional to

ΔE, because for larger barriers one needs more interfaces
N to maintain the accuracy of computed wi’s. In addition, a
large time effort is required to optimize positions of
interfaces in the coordinate space [21,22] (we could
eliminate this effort [27] by placing interfaces equidistantly
in the energy space). Another serious problem of FFS is the
instability by the multiplication of N ≫ 1 numerically
evaluated probabilities wi [28].
Thus, a new class of numerical methods which could

compute the switching rate using only single-stage LD
simulations for any barriers is highly desirable. Here we
present such a method introducing the concept of the
energy-dependent effective temperature. We show that it
allows fast and accurate direct LD simulations of transitions
over arbitrarily high barriers with the simulation time which
does not increase with ΔE. An extended version of this
research is presented in Ref. [28].
Concept of the energy-dependent temperature (EDT).—

Direct LD simulations of transitions over high barriers fail
because the system spends the majority of its time near its
energy minima, and the probability to reach the region near
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a saddle is exponentially small [p ∼ expð−ΔE=kBTÞ]. To
eliminate this drawback, we suggest to perform LD
simulations using energy-dependent temperature TðEÞ,
which is equal to the room temperature Troom for energies
near the saddle point and is much higher than Troom for
energies considerably lower than ΔE. For this purpose, we
use the functional dependence,

TðEÞ ¼ Troom þ T lrg

2
þ Troom − T lrg

2
tanh

�
E − bcoolkBT

ΔT

�

ð1Þ

(see Fig. 1), where the finite width ΔT ¼ ð0.1 − 1.0ÞkBT
ensures a smooth transition between “hot” and “cold”
regions to avoid numerical instabilities of LD trajectories.
Temperature T lrg and the “cooling” energy Ecool ¼ ΔE −

bcool · kBTroom should provide a relatively high probability
pcool to occupy states near Ecool, from which a system will
overcome the remaining energy barrier at T ≈ Troom. We
have found that pcool ≈ expð−Ecool=kBT lrgÞ should lie in
the range 0.002–0.02 to achieve a sufficiently high
occupation of these states, leading to the values
Ecool=kBT lrg ¼ alrg ≈ 4–6; results below are obtained
for alrg ¼ 4.
Finally, bcool controls the effective barrier heightΔEeff ¼

ΔE − Ecool ¼ bcool · kBTroom to be overcome starting from
Ecool. The upper limit of bmax

cool ≈ 10 is posed by standard LD
simulations, for which ΔEeff=kBT ≤ 10. Too low values of
bcoolð< 5Þ lead to very frequent barrier crossings
and problems by distinguishing “true” and “false” tran-
sitions [27]. Within this range 5 ≤ bcool ≤ 10 we have used
bcool ¼ 7 for results presented here (see Ref. [28] for more
details).
Clearly, for systems with TðEÞ [Eq. (1)] numerous

switchings will be observed in LD simulations for any
barrier height, because the effective barrier to be overcome
is always only ΔEEDT ≃ bcoolkBT. Thus, τsw for the system
with EDT can be computed directly by dividing the
physical LD simulation time by the number of true
switchings: τEDTsw ¼ tsim=Nsw [27]. The main problem is

how to establish the relation between τEDTsw and the real
switching time at a constant temperature τCTsw .
Relation between τEDTsw and τCTsw .—For this purpose we

use the same expression for the transition rate Γ as in FFS:
for N virtual interfaces fλi; i ¼ 1;…; Ng between the
basins A and B (λ1 ≡ λA, λN ≡ λB), we have

ΓA→B ¼ ΦAðTÞ ·
YN−1

i¼2

wi→iþ1; ð2Þ

where ΦA denotes the flux out of the basin A [22,27].
Using Eq. (2) and recalling that τsw ¼ 1=Γ, we obtain

τCTsw
τEDTsw

¼ ΓEDT
A→B

ΓCT
A→B

¼ ΦEDT
A ðT ¼ T lrgÞ

ΦCT
A ðT ¼ TroomÞ

· r; ð3Þ

with r being the ratio of probability products,

r ¼
YN−1

i¼2

wEDT
i→iþ1=

YN−1

i¼2

wCT
i→iþ1; ð4Þ

so that the actual switching time (at T ¼ Troom) is

τCTsw ¼ τEDTsw ·
ΦEDT

A

ΦCT
A

· r: ð5Þ

In this expression, τEDTsw in Eq. (5) and both fluxes Φ can be
computed directly using LD EDT simulations. Thus, to
obtain τCTsw , we need only a method to evaluate the ratio r
(4). We point out that this method should have negligibly
low computational cost, otherwise the EDT algorithm will
not be any better than the standard FFS.
Markov chain formalism for EDT.—We shall compute

the ratio (4) using the Markov chain (MCH) formalism
[29]. We introduce the Markov chain with the states
f1;…; Ng, corresponding to our interfaces fλ1;…; λNg
and one-step transition probabilities pi→iþ1 and qi→i−1
between them. These probabilities form the one-step
transition matrix P̂, which gives the change of the state
occupations in a MCH after one step: Pi;iþ1 ¼ pi→iþ1

and Pi;i−1 ¼ qi→i−1.
To compute the total probabilities wi→iþ1 in MCH

formalism, we recall how they are computed in FFS: many
trajectories are launched from the interface λi and simulated
using LD until they either reach λiþ1 or return to A.
Probability wi→iþ1 is then defined as the fraction of
trajectories arriving λiþ1.
Hence the random process serving to obtain wi→iþ1

terminates when the system reaches either the state 1 or
(iþ 1). This means that it is described by the subset of
iþ 1 states of our full Markov chain. So for the compu-
tation of wi→iþ1 we have a MCH of the length (iþ 1) with
absorbing borders, and corresponding elements of its P̂ðiþ1Þ

matrix are Pðiþ1Þ
11 ¼ Pðiþ1Þ

iþ1;iþ1 ¼ 1, Pðiþ1Þ
12 ¼ p1→2 ¼ 0, and

Pðiþ1Þ
iþ1;i ¼ qiþ1→i ¼ 0:

FIG. 1. Energy-dependent temperature (1) for ΔE ¼ 18kBT;
alrg ¼ 4, bcool ¼ 7.
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P̂ðiþ1Þ ¼

2
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.
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0 � � � 0 1

3
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:

ð6Þ

Next, we recall that wi→iþ1 is computed by LD without
restricting the simulation time. In the MCH language this
means that we look for the probability that a system starting
from the ith state will be found in the (iþ 1)th state after an
arbitrary large number of steps (equilibrium). Thus,
we have to find the matrix Êðiþ1Þ ¼ limk→∞ðP̂ðiþ1ÞÞk,
and the probability of interest is then given by the matrix

element wi→iþ1 ¼ Eðiþ1Þ
i;iþ1 .

Importantly, the matrix Êðiþ1Þ can be computed very fast:

diagonalizing the matrix P̂ðiþ1Þ ¼ Q̂ D̂ Q̂−1, we obtain

limk→∞ðP̂ðiþ1ÞÞk ¼ limk→∞Q̂D̂kQ̂−1. Hence we need only
the limits limk→∞ dkj for eigenvalues of P̂

ðiþ1Þ. As P̂ðiþ1Þ are
the so-called stochastic matrices (the sum of elements of
each row is one), all their eigenvalues obey the inequality
di ≤ 1, so these limits are either 0 or 1.
Assignment of one-step probabilities.—To assign pi→iþ1

and qiþ1→i for our MCH, we first establish the correspon-
dence between its states and the energy landscape. In our
EDT algorithm we use the same equidistant positioning of
MCH states in the energy space (Fig. 2), as in Ref. [27], so
that probabilities wi→iþ1 ∼ expð−ðEiþ1 − EiÞ=kTÞ are
approximately equal for all “uphill” interface pairs.
This interface placement allows us to assign the MCH

probabilities using the detailed balance principle from
thermodynamics [2]. Namely, one-step probabilities pi→j
and qj→i are related to equilibrium probabilities to find
the system in the corresponding states πi and πj via
πipi→j ¼ πjqj→i. In equilibrium, the probabilities π are
given by πi ≃ ni expð−Ei=kBTÞ, where ni is the density of

states (DOS) at the energy Ei. Hence, pi→iþ1 and qiþ1→i
should obey the relation

pi→iþ1

qiþ1→i
¼ πiþ1

πi
¼ niþ1

ni
exp

�
−
δEi;iþ1

kBT

�
; ð7Þ

with δEi;iþ1 ¼ Eiþ1 − Ei. To satisfy this relation, we set

pi→iþ1¼
ffiffiffiffiffiffiffiffiffi
niþ1

ni

r
exp

�
−
1

2

δEi;iþ1

kBT

�
; qiþ1→i¼

1

pi→iþ1

: ð8Þ

To evaluate niþ1=ni, we expand niþ1 ¼ nðEiþ1Þ for small
energy increments δEi;iþ1 ≡ δE near E ¼ Ei, obtaining

�
niþ1

ni

��1=2
¼ 1� δE

2ni

∂n
∂E

����
E¼Ei

: ð9Þ

Thus, for energies where DOS nðEÞ is nonsingular (i.e., E
does not correspond to an extremum of a saddle point) we
can set niþ1=ni ≈ 1 for small δE → 0. Finally, we have to
normalize p’s and q’s so that pi→iþ1 þ qi→i−1 ¼ 1.
Probabilities pi→iþ1 as functions of the interface number

i for T ¼ TðEÞ given by Eq. (1) exhibit [according to their
definition (8)] a jump at the saddle point interface, where
the energy difference Eiþ1 − Ei changes its sign. In
addition, pi’s rapidly change also around the interfaces
corresponding to Ecool ¼ ΔE − bcoolkBT due to the temper-
ature drop (see Ref. [28] for details).
Validation of the EDT algorithm.—Total MCH transition

probabilities obtained from the one-step quantities pi

and qi as wi→iþ1 ¼ Eðiþ1Þ
i;iþ1 are shown in Fig. 3 (lines with

FIG. 2. Markov chain and energy landscape.

FIG. 3. Total transition probabilities wi→iþ1 for FFS
(open triangles) and MCH (closed circles) methods for the
constant T ¼ 300 K (a) and EDT given by Eq. (1) (b); here
ΔE=kBT ¼ 38 and δE=kBT ¼ 1.
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circles). Their behavior can be better understood by
comparing them to analogous quantities calculated by
FFS with the same interfaces. First we note that the
difference between wi→iþ1 obtained by MCH and FFS
for interfaces well below the saddle point is due to the
rather large value of δE ¼ 1kBT, so that neglecting the
second term in the expansion (9) of nðEÞ has a noticeable
effect; this difference rapidly decreases with δE → 0.
The most important feature of wi→iþ1 seen in Fig. 3 both

for T ¼ const and EDT is the large discrepancy between
MCH and FFS probabilities at and slightly above the saddle
point energy ΔE. This discrepancy reflects the qualitative
difference between the FFS and MCH methods. Namely, in
FFS we evaluate wi→iþ1 by LD simulations fully taking into
account complicated system dynamics near the saddle point
(i.e., back hopping) and peculiarities of FFS interfaces. In
particular, for our macrospin the probability to reach the
saddle point interface λs is especially small (large dips at
Ei ¼ ΔE on wi dependencies for FFS), because in order to
reach this interface, mx projection should change its sign
(see Refs. [27,28] for more details). For this reason the
distance between λs−1 and λs in the coordinate space is
much larger than for preceding interface pairs, so that the
probability wðλs−1 → λsÞ is smaller. Futher, wi→iþ1

strongly increases after λs, because the probability to return
to previous interfaces is very low. In contrast, for our MCH
we merely compute the limit Êðiþ1Þ ¼ limk→∞ðP̂ðiþ1ÞÞk
where one-step probabilities pi and qi in P̂ have only a
relatively small jump near the saddle, so that wi→iþ1

changes in this region much slower than for FFS.
However—and this is the key point—the ratio of

probabilities wEDT
i→iþ1=w

CT
i→iþ1 should be the same (in the

limit δE → 0) for FFS and MCH methods for all interface
energies, including the saddle point region.
This statement follows directly from the EDT construc-

tion (1), where TðEÞ → Troom for E ≃ ΔE. Because of this
behavior, for one-step MCH probabilities (8) near the
saddle point we have pEDT

i→iþ1 ¼ pCT
i→iþ1 (the same for

q’s). Hence, as long as bcool is large enough to allow
wi→iþ1 to reach its steady-state value for T ¼ Troom in the
saddle point region, in this region we obtain
wEDT
i→iþ1 ¼ wCT

i→iþ1. In the FFS method, probabilities wi

are obtained from LD simulations, which “feel" at each
time integration step only the local temperature, so that we
have wEDT

i→iþ1 ¼ wCT
i→iþ1 also for FFS.

Corresponding ratios wEDT
i→iþ1=w

CT
i→iþ1 are plotted in

Fig. 4. They agree for FFS and MCH methods very well
for all interfaces—both far below the saddle (where only
the local temperatures matter) and near the saddle point,
where the system dynamics plays a decisive role in FFS.
This means that the ratio r (4) required for the evaluation of
τsw in EDT can be computed from the Markov chain
method by diagonalizing the matrices P̂ðiþ1Þ. Moreover,
this ratio depends only on the function TðEÞ and thus can

be evaluated for any system with the given barrier ΔE once
and for all.
Hence, for evaluating τsw we have only to collect an

accurate statistics of transitions over the effective barrier
with the height ΔEeff ¼ broomkBT using LD with EDT.
Corresponding simulation time tsim is not only accessible for
the direct LD modeling, but should not grow with the actual
barrier ΔE—in strong contrast both to standard LD [where
tsim ∼ expðΔE=kBTÞ] and to FFS methods (tsim ∼ ΔE).
Moreover, our method does not suffer from the instability
of multistage methods (see Ref. [28]), because our compu-
tation of the product ratio r (4) is error-free.
Physical results and comparison of EDT LD to FFS.—

We have simulated with both methods the same series of
macrospins with the biaxial anisotropy as in Ref. [27], i.e.,
having Permalloy magnetic parameters (magnetization
M ¼ 800 G, damping λ ¼ 0.01) and demagnetizing factors
of flat nanoellipses with the thickness h ¼ 3 nm, short axis

FIG. 4. Ratio of probabilities wEDT
i→iþ1=w

CT
i→iþ1 for FFS (open

triangles) and MCH (full circles) methods as function of the
interface energy.

FIG. 5. Switching times computed by FFS (blue circles) and
EDT (red crosses) (a) and the same times divided by the
analytical result from [27] (b); excellent agreement between
FFS and EDT is clearly demonstrated.

PHYSICAL REVIEW LETTERS 127, 247201 (2021)

247201-4



b ¼ 40 nm, and long axes a ¼ 50 − 100 nm; correspond-
ing barriers lie in the range 9 ≤ ΔE=kBT ≤ 60.
Our method shows an excellent agreement with FFS in

the whole range of switching times (≈20 orders of
magnitude; see Fig. 5); it can be seen especially well in
Fig. 5(b), where the ratios of FFS and EDT switching times
to our analytical result for the same macrospins [27] are
plotted.
Finally, to compare the performances of our algorithm

and FFS, we have measured simulation times required to
compute τsw with the relative accuracy ϵ ¼ 5% by FFS and
EDT (Fig. 6). For FFS tsim ∼ ΔE, because the number of
interfaces N ∼ ΔE. For our EDT method, tsim even
decreases with ΔE, because for larger barriers T lrg is
higher, facilitating transitions over the barrier [28].
Speed-up of the EDT versus FFS is shown in Fig. 6(b):

the break point is achieved already for a very moderate
barrier ΔE=kBT ≈ 20, and for the highest studied value
ΔE=kBT ≈ 60 EDT is more than 40× faster.
Conclusion.—Introducing the concept of the energy-

dependent temperature, we propose a method to compute
transition rate over arbitrary high energy barriers by
single-stage Langevin dynamics simulations (EDT LD).
Verification on biaxial macrospins has shown that
EDT LD results agree very well with the forward flux
sampling. EDT computation time does not increase with
ΔE, in contrast to FFS and analogous algorithms, provid-
ing a unique possibility to simulate transitions over any
barrier with a very moderate numerical effort. Speed-up of
the EDT LD compared to the (strongly optimized)
FFS achieves 40× already for ΔE ≈ 60kBT. Further,
EDT does not require the evaluation of the product of a

large number of conditional probabilities as in FFS
and thus does not suffer from the corresponding
instability.
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