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Single-stage direct Langevin dynamic simulations of transitions over arbitrarily high energy
barriers: Concept of energy-dependent temperature
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In this paper we present an algorithm which allows single-stage direct Langevin dynamics simulations of the
escape rate over arbitrarily high energy barriers employing the concept of the energy-dependent temperature
(EDT). In our algorithm, simulation time required for the computation of the escape rate does not increase with
the energy barrier. This is achieved by using in simulations an effective temperature which depends on the system
energy: around the energy minima this temperature is high, whereas it tends towards room temperature when the
energy approaches the saddle point value. Switching times computed via our EDT algorithm show an excellent
agreement with results obtained with the established forward flux sampling (FFS) method. As the simulation
time required by our method does not increase with the energy barrier, we achieve a very large speedup when
compared even to our highly optimized FFS version with interfaces placed equidistantly in the energy space. In
addition, our method does not suffer from stability problems occurring in multistage algorithms (like FFS and
“energy bounce” methods) due to the multiplication of a large number of transition probabilities between the
interfaces.
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I. INTRODUCTION

Evaluation of escape rates � (or, equivalently, switching
times τsw = 1/�) over high energy barriers is a highly im-
portant and in most cases a very difficult task arising in
any scientific area where systems with more than one stable
state are studied—in physics, chemistry, molecular biology,
material science, etc. [1]. The large variety of corresponding
applications—including catalytic reactions (in particular pro-
tein folding), diffusion in systems with high energy barriers,
phase transitions, and information stability in any type of stor-
age media—is considered in many recent books and reviews,
see, e.g., [2–6].

System dynamics near the saddle point may be highly
nontrivial, so that evaluating the transition rate is much more
difficult than the computation of the height of the correspond-
ing energy barriers �E separating metastable energy minima.
For solution of the latter problem, several meanwhile standard
methods have been implemented in recent decades. The most
widely used algorithm for this purpose is undoubtedly the
“nudged elastic band” (NEB) method of Jonsson et al. [7],
which employs the idea that the energy gradient component
perpendicular to the optimal path should be zero along the
whole path. The main advantage of NEB is that neighbor-
ing system states along the transition path are connected via
artificial “springs” to prevent a too large distance between
these states during the path-finding procedure. Examples of
the latest generalizations and improvements of this power-
ful method and its applications to very different chemical
systems—from chemical reactions over dislocation dynamics
to magnetic transitions—can be found, e.g., in [8–12].

Some less known methods for computing �E are the
closely related “string method” which also searches for the

“minimal energy path,” but in a slightly different way [13,14]
and the minimization of the Onsager-Machlup functional [15],
first implemented by us for an interacting system of magnetic
single-domain particles in [16].

In order to compute the average lifetime of a system
with several metastable states– - which is the real quan-
tity of interest for most applications—one needs more than
the value of the energy barrier �E . Even in the simplest
analytical approximation for � given by the Arrhenius law
� = νatt exp(�E/kBT ), the “attempt frequency” νatt , usually
interpreted as the oscillation frequency near the metastable
state, is present. Omitting the discussion about the difficult
task of computing this frequency for systems with inter-
nal degrees of freedom (see, e.g., [1,17,18], etc.), we recall
that the Arrhenius law is fundamentally not a satisfactory
approach [19,20]: this law does not contain the system damp-
ing, in which presence in the escape rate is required by the
fluctuation-dissipation theorem, as switching can occur only
due to the interaction with the thermal bath.

The best possible analytical solution for the escape rate
in a system with arbitrary damping (known as the Kramers
problem) was derived in the famous paper of Mel’nikov and
Meshkov [21]; this solution includes the intermediate-to-high
damping (IHD) regime studied by Brown [22] and the very
low damping (VLD) considered by Klik and Günther [23].
The formalism developed in [21] was successfully applied to
escape rates out of a single well and transition rates between
two energy minima for a single-domain magnetic particle in
[24,25]; for the corresponding detailed review see [20].

However, as any analytical approach, this solution has
serious shortcomings. Many-particle systems with strong in-
terparticle interaction usually cannot be studied analytically,
even when only one interaction type is dominating (like
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Coulomb interaction in systems of charged particles). Within
the context of this study, an analytical solution is not available
for magnetic particles with a size larger than the characteristic
micromagnetic length [26], so that magnetization configura-
tion of these particles is spatially nonhomogeneous. In this
case, some discretization is required, leading to a system
of strongly interacting mesh-based entities. An additional
problem arises due to the presence of several micromagnetic
energy contributions (in particular, the competition between
the strong short-range exchange and long-range magne-
todipolar interactions), which makes even the straightforward
solution of the Landau-Lifshitz-Gilbert equation of motion in
such systems a highly demanding task.

Hence general numerical methods for the evaluation of the
actual escape rate for many-particle systems in general and for
magnetic systems in particular are strongly desired. Among
these methods, the Langevin dynamics (LD) is conceptually
the simplest one, because it directly mimics the time evolution
of the system under the influence of thermal fluctuations.
Unfortunately, exactly for this reason LD is suitable for small
barriers only (�E/kBT � 10), because switching times (and
correspondingly the computation time) grow exponentially
with �E .

Thus, working methods for evaluating numerically the es-
cape rate over high barriers are usually based on a kind of
gradual “climbing” towards the saddle point uphill the energy
surface.

The most successful general method of this class is the
so called forward flux sampling (FFS) [27–30]. In FFS, the
phase space between the two energy minima of interest is
first divided into a (large) number of interfaces. Then the
probability w(λi → λi+1) ≡ wi→i+1 to reach the next inter-
face starting from the previous one is computed. In order to
ensure that this probability is computed reasonably fast and
accurately by standard LD simulations, subsequent interfaces
are placed relatively close to each other. Finally, multiplying
the product of all these transition probabilities (i.e., for all
interface pairs between the two minima) by the flux out of
the starting minimum through the first interface, one obtains
the transition rate.

The interfaces are usually defined in the system coordi-
nate space, using the sequence of values of the “reaction
coordinate” or the “order parameter,” which defines whether
the transition has occurred or not. In micromagnetics, this
method was applied for magnetization switching in colum-
nar recording structures (order parameter being the average
magnetization projection) [31–33] and in skyrmions (order
parameter was the skyrmion size) [34].

Computational time for a single FFS run is roughly propor-
tional to the energy barrier height, because for larger barriers
more interfaces are needed in order to maintain the transition
probabilities between the neighboring interfaces reasonably
high. However, an additional (and often really substantial)
time effort is required for the optimal positioning of inter-
faces. This optimal positioning should ensure that transition
probabilities wi→i+1 are at least approximately the same for
all interface pairs, because in this case the most accurate
estimation of the transition rate is achieved [29,30]. Corre-
sponding optimal placement uses an iterative procedure which
naturally requires several evaluations of the whole set of these

probabilities, i.e., several complete FFS runs. We could
demonstrate [35] that this large additional effort can be
avoided if the interfaces are placed directly in the en-
ergy space, so that all probabilities wi→i+1 (which are
∼ exp[−(Ei+1 − Ei )/kBT ]) are approximately equal.

Another inherent problem of FFS and related multistage
climbing methods (e.g., the “energy bounce” (EnB) algorithm
[36]) is the tight requirement to the accuracy of the numeri-
cally computed transition probabilities wi, usually evaluated
by LD simulations. This accuracy should be really high
because the final result includes the product of these probabili-
ties so that any bias of wi from a system with N interfaces will
be elevated to the N th degree. Systematic errors are especially
dangerous—it is easy to estimate that for a system with 50
interfaces, such an error of only 2% in each wi would lead to
the error of nearly 300% in the final result. Even the stochastic
mean-square error of only 5% on each interface—a very good
value for this kind of simulation—would lead to a relative
error of ≈35% in the computed switching rate.

Thus, a new class of numerical methods which could per-
form the evaluation of the switching rate over the energy
barriers of arbitrary heights using only single-stage Langevin
dynamics simulations (in contrast to a gradual “climbing”
over a long series of interfaces as in FFS and EnB algo-
rithms) is highly desirable. In this study we present such an
algorithm, introducing the concept of the energy-dependent
effective temperature. Our method allows stable and accurate
single-stage simulations of transitions over any barrier with
the simulation time which does not increase with the barrier
height.

This paper is organized as follows. In Sec. II A we describe
the main idea of our algorithm. It is based on LD simulations
of the system where the effective temperature depending on
the system energy (EDT) is introduced: this temperature is
high near the energy minima and tends to room temperature in
the vicinity of the saddle point(s). Then, in Sec. II B we derive
the relation between the switching time τEDT

sw obtained for the
EDT system and the “real” switching time τCT

sw for the system
at constant temperature (CT). In Sec. III the Markov chain
used for the evaluation of the ratio of probability products
for EDT and CT cases is constructed. Section IV is devoted
to the validation of our method via the EDT version of the
FFS algorithm. Finally, Sec. V contains the direct comparison
of real switching times obtained by EDT and standard (T =
const.) FFS algorithms. Here we show a very good agreement
between both methods in the energy barriers interval 10 �
�E/kBT � 60, where switching times span about 20 orders
of magnitude. Furthermore, we demonstrate a large speedup
of the EDT algorithm as compared even to the optimized (as
explained in [35]) FFS method.

The short version of this research is submitted elsewhere
[37].

II. ENERGY-DEPENDENT TEMPERATURE:
METHODOLOGY

A. Main idea

Direct LD simulations of transitions over high energy
barriers are not feasible due to the major drawback of this
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FIG. 1. Effective temperature as a function of energy; in this
example �E/kBT = 18, alrg = 4, bcool = 7.

method: the system spends the overwhelming majority of time
in the vicinity of its energy minima, because the probability
to approach the landscape region near the saddle point is
exponentially small [p ∼ exp(−�E/kBT )].

To overcome this obstacle, we suggest to introduce the
effective energy-dependent temperature T (E ), which depends
on the system energy in the following way. For energies close
to the saddle point, T (E ) is equal to the temperature at which
we would like to compute the escape rate—we denote it as
room temperature Troom, so that T (E ) → Troom for �E − E ∼
kBT . For energies considerably lower than the energy barrier,
T (E ) is much higher than Troom: T (E ) = Tlrg � Troom for
�E − E � kBT .

For this purpose, we use the functional dependence

T (E ) = a1 + a2 tanh

(
�E − bcoolkBT

�T

)
(1)

(see Fig. 1). The finite width �T of this T distribution should
merely ensure a smooth transition between the “hot” and
“cold” regions (abrupt temperature change would cause nu-
merical instabilities of LD trajectories); we have checked
that values �T = (0.1–1.0)kBT lead to the same final results.
Parameters a1 and a2 should be chosen to satisfy the two
conditions

T (E : E − Ecool � kBT ) → Troom,

T (E : Ecool − E � kBT ) → Tlrg (2)

(cold region near the barrier and hot region far below the bar-
rier), so that a1 = (Troom + Tlrg)/2 and a2 = (Troom − Tlrg)/2.

The performance of the method, i.e., its speed, and hence
the statistical accuracy of the result, is controlled by param-
eters Tlrg and bcool. First of all, the temperature Tlrg and the
“cooling” energy Ecool = �E − bcoolkBTroom determine the
probability pcool ≈ exp (−Ecool/kBTlrg) to occupy the states
near Ecool (the latter relation does not take into account the en-
ergy dependence of the density of states, but this dependence
is much weaker than the exponential factor). This probabil-
ity should be large enough to frequently provide “launching
points” for the system in order to overcome the effective
energy barrier �Eeff = �E = Ecool starting from these states.
We have found that the values pcool in the region pcool =
0.002–0.02 are the optimal choice, resulting in Ecool/kBTlrg =

alrg ≈ 4–6. Increase of alrg (i.e., decrease of Tlrg) above this
range naturally led to fewer observed transitions and poorer
statistics. Smaller values of alrg led to values of Tlrg which are
so high that the system behavior near the saddle point was still
affected. We shall explain this issue in more details in Sec. IV.
For results presented below we have used alrg = 4.

The last parameter to be determined (bcool) controls the
height of the effective energy barrier �Eeff = bcoolkBTroom

which the system has to overcome starting from the energy
Ecool. Hence the number of transitions observed during the
EDT simulations exponentially depends on this parameter.
For this reason the upper limit of bcool is set simply by the
largest barrier which can be overcome within standard LD
simulations: �Eeff � 10kBT , so that bcool � 10. On the other
hand, too small values of bcool lead to very frequent cross-
ings of the energy barrier, so that the very idea of studying
rare events is lost (in particular, the system cannot reach a
partial equilibrium within the given energy well). From the
methodical point of view, it becomes hardly possible to dis-
tinguish between “true” and “false” transitions between the
basins (see [35] for the detailed discussion). This argument
sets the low limit as bcool � 5. In our simulations we have used
mostly bcool = 7 and have checked that varying it in the above
mentioned limits does not change the final results within the
statistical accuracy.

Taking into account that we have used only general “ther-
modynamical” arguments to choose these parameters, we
believe that our choice should be valid (at least as a good first
approximation) also for other physical systems.

An example of the dependence T (E ) with parameters
given above is shown in Fig. 1 for a system with the energy
barrier �E = 18kBT .

It is clear that for the system with the EDT profile (1)
we should observe numerous transitions over the barrier �E
by employing direct LD simulations, no matter how large
this barrier is: effective temperature for energies E < �E −
bcoolkBT is high enough to ensure a significant occupation of
these states, so that the energy barrier to be overcome is only
�EEDT � bcoolkBT . The corresponding switching time for an
EDT system thus can be computed in a standard way using
LD simulations, namely dividing the physical simulation time
by the number of true switchings: τEDT

sw = tsim/Msw [35].
The key problem is how to establish the relation between

this EDT-computed switching time τEDT
sw and the switching

time for the same system at a constant temperature τCT
sw —the

quantity of a real physical interest.

B. Relation between the EDT-computed time and the real
switching time

To establish this relation, we start from the same expression
for the transition rate � which is used in forward-flux sam-
pling (FFS): we introduce virtual interfaces {λi, i = 1, . . . , N}
between the basins A and B (whereby λ1 ≡ λA, λN ≡ λB), so
that

�A→B = �λ1→λ2

N−1∏
i=2

w(λi → λi+1) ≡ �A

N−1∏
i=2

wi→i+1. (3)
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This equation represents a very general statement (not re-
stricted to FFS) that the transition rate �A→B can be computed
as the product of the flux �A out of the basin A through
the interface λ2 (i.e., the number of particles per unit time
starting in A and crossing the first interface outside A), and
the subsequent conditional probabilities wi→i+1 that a particle
starting from the interface i reaches the interface i + 1. Note
that we slightly changed the numbering of the interface com-
pared to our previous paper [35] to make it consistent with the
numbering of Markov chain states used in the next sections.

Using Eq. (3) and the relation τsw = 1/�, the ratio of
interest can be written as

τCT
sw

τEDT
sw

= �EDT
A→B

�CT
A→B

= �EDT
A (T = Tlrg)

�CT
A (T = Troom )

∏N−1
i=2 wEDT

i→i+1∏N−1
i=2 wCT

i→i+1

, (4)

where the initial fluxes should be computed at corresponding
temperatures, as explicitly indicated in (4). Hence, the actual
switching time can be evaluated as

τCT
sw = τEDT

sw
�EDT

A

�CT
A

r, (5)

where r denotes the ratio of two probability products

r =
∏N−1

i=2 wEDT
i→i+1∏N−1

i=2 wCT
i→i+1

. (6)

As explained above, τEDT
sw in expression (5) can be extracted

from direct LD simulations. The fluxes �EDT
A and �CT

A are also
easily available from such simulations, because the interface
λ2 is usually chosen to be close (∼kBT ) to the basin A. Thus,
our task reduces to the evaluation of the ratio r defined by (6).

We emphasize that this ratio should be evaluated either
by an analytical method or a numerical one with a very low
computational effort, because otherwise the EDT algorithm
will not have any advantage compared to the standard FFS. In
the next section we construct a Markov chain which enables
the evaluation of (6) using only N diagonalizations of matrices
with sizes � N .

III. MARKOV CHAIN FORMALISM

A. Evaluation of the equilibrium probabilities wi→i+1 using
Markov chains

In this subsection we demonstrate how to compute the
required ratio (6) of probability products using the Markov
chain (MCH) formalism (see, e.g., [38]). For this purpose
we introduce the Markov chain with the set of states {i =
1, . . . , N}, which corresponds to our set of interfaces {λA =
λ1, . . . , λi, . . . , λN = λB}. We denote the one-step “forward”
and “backward” transition probabilities between these chain
states as pi→i+1 and qi→i−1. Corresponding MCH for the
whole set of interfaces is shown in Fig. 2.

Properly normalized probabilities {p} and {q} (so that
pi→i+1 + qi→i−1 = 1) form the one-step transition matrix P̂
of our MCH: Pi,i+1 = pi→i+1 and Pi,i−1 = qi→i−1; this matrix
governs the change of the state occupations in our MCH after
one step.

To compute the total transition probabilities wi→i+1 ap-
pearing in the basic expressions (3)–(6), we first recall how

FIG. 2. Markov chain consisting of N states {1, . . . , N} corre-
sponding to interfaces {λA, . . . , λB} as shown by black arrows.

these probabilities are defined: a system trajectory is started
from the interface λi and simulated (using the standard
Langevin dynamics) until it either arrives at the next interface
λi+1 or returns to the basin A. Then the next trajectory is
launched from λi, etc. Probability wi→i+1 is computed as the
fraction of all launched trajectories which arrive at λi+1.

According to this procedure, the random process for which
we construct our MCH for the evaluation of wi→i+1, ter-
minates when the system reaches either state 1 or state
(i + 1). Hence, for computing wi→i+1 we have the MCH
of the length (i + 1) with absorbing borders, meaning that
corresponding elements of the matrix P̂(i+1) of this chain
are P(i+1)

11 = P(i+1)
i+1,i+1 = 1, P(i+1)

12 = p1→2 = 0, and P(i+1)
i+1,i =

qi+1→i = 0. The whole matrix P̂(i+1) is then tridiagonal and
has the form

P̂(i+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
q21 0 p23

0 q23 0 p34
...

. . .
...

0 pi−1,i

qi,i−1 0 pi,i+1

0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)
This matrix belongs to the class of stochastic matrices, for
which the sum of elements of each row is one.

Next, we recall that wi→i+1 is computed from LD simu-
lations which are carried out until the system reaches either
the interface λi+1 or the basin A, i.e., without restricting the
simulation time. In the MCH formalism this corresponds to
the probability that the system, being initially in the ith state,
will be found in the (i + 1)th state after an arbitrarily large
number of steps (equilibrium configuration). Thus, in order to
compute wi→i+1 from the one-step matrix P̂(i+1), we have to
find the matrix Ê(i+1) = limk→∞(P̂(i+1))k . The probability of
interest is then given by the corresponding matrix element of
Ê(i+1), namely wi→i+1 = E (i+1)

i,i+1 .
Importantly, the limit limk→∞(P̂(i+1))k can be computed

very fast: after the diagonalization of P̂(i+1) = Q̂D̂ ˆQ−1 this
limit becomes limk→∞(P̂(i+1))k = limk→∞ Q̂D̂k ˆQ−1, so that
we have to evaluate only the limits limk→∞ dk

j for eigenvalues

of the matrix P̂(i+1). According to the properties of stochastic
matrices, all their eigenvalues obey the inequality di � 1, so
that corresponding limits are either 0 or 1.

B. Assignment of one-step probabilities {p} and {q}
To assign the one-step probabilities pi→i+1 and qi+1→i

for the Markov chain, we have first to establish the cor-
respondence between the energy landscape and the MCH
states. In our previous paper [35] we have proposed to place
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FIG. 3. Correspondence between the Markov chain states and the
two-minima energy landscape.

the interfaces for FFS simulation of the transition A → B
not according to the values of magnetic moment projec-
tions (as it is done usually [31,32]), but equidistantly in the
energy space of the studied system. This positioning has
greatly simplified the FFS algorithm, because the probabilities
wi→i+1 depend mainly on the energy differences between
the interfaces: wi→i+1 ∼ exp[−(Ei+1 − Ei )/kT ]. Hence, for
energy-equidistant interfaces these probabilities should be ap-
proximately the same for all “uphill” interface pairs i → i +
1, which should minimize the statistical error of FFS [29,30].

In our EDT algorithm presented here, we use the same
principle to position the interfaces and correspondingly
Markov chain states, as shown in Fig. 3.

This interface placement allows us to assign the MCH
probabilities pi→i+1 and qi+1→i using the thermodynamical
principle of the detailed balance (see, e.g., [39]). Accord-
ing to this principle, one-step MCH probabilities pi→ j and
q j→i are related to the equilibrium probabilities to find the
system in the corresponding states πi and π j as πi pi→ j =
π jq j→i. Furthermore, in a thermodynamic equilibrium these
latter probabilities are given by πi � ni exp(−Ei/kBT ), where
ni = n(Ei ) is the number of states per unit energy, i.e., the
density of states (DoS) at the energy Ei. Hence, one-step MC
probabilities pi→i+1 and qi+1→i should obey the relation

pi→i+1

qi+1→i
= πi+1

πi
= ni+1e−Ei+1/kBT

nie−Ei/kBT
= ni+1

ni
exp

(
−δEi,i+1

kBT

)
,

(8)
where δEi,i+1 = Ei+1 − Ei.

To satisfy this relation, we set

pi→i+1 =
(ni+1

ni

)1/2
exp

(
−1

2

δEi,i+1

kBT

)
, (9)

qi+1→i =
(

ni

ni+1

)1/2

exp

(
+1

2

δEi,i+1

kBT

)
. (10)

To evaluate the ratio of DoS ni+1/ni for two subsequent states
we note that for a small energy increments δEi,i+1 ≡ δE we
can expand ni+1 = n(Ei+1) into the Taylor series near E = Ei,
obtaining

ni+1 = ni + ∂n

∂E

∣∣∣∣
E=Ei

δE = ni

(
1 + δE

ni

∂n

∂E

∣∣∣∣
E=Ei

)
(11)

so that the required ratio becomes
(ni+1

ni

)±1/2
= 1 ± δE

2ni

∂n

∂E

∣∣∣∣
E=Ei

. (12)

FIG. 4. One-step probabilities pi→i+1 (lines with crosses) and
total probabilities wi→i+1 (lines with circles) as functions of the
interface number for T = Troom (a) and T = T (E ) (b).

Thus, for energies where the DoS n(E ) is nonsingular (which
is normally the case if E does not correspond to an extremum
of a saddle point) we can set ni+1/ni ≈ 1 for small δE → 0.
Finally, we have to normalize p’s and q’s so that pi→i+1 +
qi→i−1 = 1 as mentioned above.

IV. VALIDATION OF THE EDT ALGORITHM

Dependencies of probabilities pi on the interface num-
ber i for the whole Markov chain are shown in Fig. 4 for
T = Troom = const. and T = T (E ) (1) as lines marked with
crosses; in this example here the barrier is �E = 38kBT and
the interface distance δE = 0.25kBT (qi = 1 − pi and thus are
not shown).

According to the definition (9), for T = const. one-step
probabilities pi should exhibit a jump for the interface cor-
responding to the saddle point [i.e., the middle interface in
Fig. 4(a)], because at this point the energy difference Ei+1 −
Ei changes its sign. According to Eq. (1) and Fig. 1, the
values of pi’s should rapidly change also around the interfaces
corresponding to the energy Ecool = �E − bcoolkBT [line with
crosses in Fig. 4(b)], where the temperature drops from Tlrg to
Troom.

Total transition probabilities wi→i+1 obtained from these
one-step quantities as explained above [i.e., as wi→i+1 =
E (i+1)

i,i+1 , where Ê(i+1) = limk→∞(P̂(i+1))k with the matrix P̂
given by (7)], are shown in the same Fig. 4 as lines marked
by circles. It can be seen that after the jump of pi the total
probability wi→i+1 changes smoothly, tending to its new limit
for the new constant temperature: wi→i+1 → exp(−δE/kBT )
for δE > 0 [35]. This behavior is in accordance with the
physical sense of the quantity wi→i+1 defined as the result of
an unlimited number of steps for the MCH with the matrix
(7). For example, it is clear that the total probability wi→i+1

to reach the next interface, i.e., not to return back to the basin
A, should gradually increase when the distance to this basin
increases.
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FIG. 5. Total transition probabilities wi→i+1 for FFS (open trian-
gles) and MCH (closed circles) methods for the constant temperature
T = 300 K (system with �E/kBT = 38 and δE/kBT = 1).

The behavior of MCH probabilities wi→i+1 can be better
understood by comparing them to analogous quantities calcu-
lated via the FFS with the same energy-equidistant interfaces
(see [35] for the details of the latter method). Results of this
comparison for the system with �E/kBT = 38 and interface
distance δE/kBT = 1 are shown for T = const. in Fig. 5 and
for the EDT (1) in Fig. 6.

First we note that in both cases the difference between
probabilities obtained by MCH and FFS for interface ener-
gies well below the saddle point is due to the rather large
value of the interface distance (δE = 1kBT ) used here. For
such δE neglecting the change of n(E ) in the expansion (12)
has a noticeable effect. We have checked that this difference
decreases with δE → 0, as it should be. Furthermore, we
note that for this particular model it is possible to evaluate
DoS and to take the corresponding correction into account by
evaluating one-step and total transition probabilities. With this
correction, MCH and FFS probabilities wi→i+1 coincide for
energies below the saddle. However, as we aim to develop
a universal method which should be also suitable for more
complicated models where the evaluation of DoS requires a
substantial effort, we did not introduce this correction here.

The energy dependence of total probabilities wi→i+1 in
the EDT method shown in Figs. 4 and 6 provides an addi-
tional condition for the choice of the EDT parameters alrg and
bcool. Namely, the probability wi→i+1(E ) should be allowed

FIG. 6. The same as in Fig. 5 for the energy-dependent tempera-
ture T (E ) given by (1).

FIG. 7. To the explanation of the dip on the dependencies
wi→i+1(Ei ) in Figs. 5 and 6: the interface λs−1 immediately before
the saddle point and the next (saddle) interface λs are separated by a
large distance in the coordinate space.

“relax” to its “normal” value for T = Troom starting from a
much higher value for T = Tlrg. This requirement poses the
lower limit on the values of bcool (to make the difference
�E − Ecool = bcoolkBT large enough) and alrg (so that the
value of Tlrg is not too high). We emphasize that checking
the fulfillment of this condition does not require any LD
simulations, but merely the evaluation of MCH probabilities
as explained above.

Next, we consider the most important feature of wi→i+1

seen in Figs. 5 and 6: the large discrepancy between MCH
and FFS probabilities at and slightly above the saddle point
energy �E . This discrepancy reflects the qualitative dif-
ference between the FFS and MCH methods. Namely, in
FFS we evaluate wi→i+1 by LD simulations taking into ac-
count complicated physical processes near the saddle point
(back-hopping in the first place) and the peculiarities of FFS
interfaces for the specific system under study. In particular,
for our macrospin the probability to reach the saddle-point
interface λs is especially small (see large dips at Ei = �E on
wi dependencies for FFS in Figs. 5 and 6), because the condi-
tions to reach this interface also include the requirement that
mx-projection changes its sign (see [35] for details). For this
reason the distance between the interface λs and the previous
one in the coordinate space is much larger than for preceding
interface pairs (see Fig. 7), leading to the correspondingly
small probability w(λs−1 → λs). For the same reason, wi→i+1

strongly increases immediately after this interface, because
the probability to return to previous interfaces (before the
saddle point) is very low.

In contrast, in MCH we merely compute the limit Ê(i+1) =
limk→∞(P̂(i+1))k where one-step probabilities pi and qi consti-
tuting the matrix P̂ exhibit only a relatively small jump near
the saddle point, so that wi→i+1 do not show any dip at this
interface and change after λs much slower than for FFS.

However—and this is the key point of our method—the
ratio of probabilities wEDT

i→i+1/w
CT
i→i+1 should be the same (in

the limit δE → 0) in both FFS and MCH methods for all
interface energies, including the region near the saddle point.

This statement follows directly from the construction of
the energy-dependent temperature (1), where T (E ) → Troom

for E � �E . Due to this behavior of T (E ) one-step MCH
probabilities (9) and (10) near the saddle point should be the
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FIG. 8. Ratio of probabilities wEDT
i→i+1/w

CT
i→i+1 for FFS (open tri-

angles) and MCH (full circles) methods as a function of the interface
energy. A very good agreement of these ratios for both methods is
clearly demonstrated.

same for T = const. and EDT. Hence, as long as bcool is large
enough to allow wi→i+1 (computed from the matrix Ê(i+1)) to
reach its steady-state value for T = Troom in the saddle point
region, in this region we should obtain wEDT

i→i+1 = wCT
i→i+1. In

the FFS method, probabilities w are obtained from LD sim-
ulations, which “feel” at each time integration step only the
local temperature, so these probabilities should also be equal
in the saddle-point region for T = const. and T (E ) cases.

Corresponding ratios wEDT
i→i+1/w

CT
i→i+1 are plotted in Fig. 8

for the same system as in Figs. 5 and 6. It can be clearly seen
that these ratios for FFS and MCH methods agree very well
for all interface energies—both well below the saddle point
(where these ratios are governed only by the local tempera-
tures) and in the saddle point region, where the dynamics of
a real system plays a decisive role in the FFS method. This
means that the ratio of the probability products (6) required
for the evaluation of the switching time in our EDT concept
can be computed using the matrix chain method. As stated
above, this computation is very fast, involving only the diago-
nalization of matrices P̂(i+1). Moreover, the ratio r computed
this way depends only on the function T (E ) and thus can be
evaluated for any system with the given barrier �E once and
for all.

Hence our algorithm for the switching time evaluation
requires only numerical simulations of transitions over the
barrier for the studied system with the energy-dependent tem-
perature, whereby we have to collect a sufficiently accurate
statistics of transitions over the effective barrier with the
height �Eeff � �E − Ecool = broomkBT . Corresponding sim-
ulation time tsim is not only easily accessible for the direct
LD modeling, but should be approximately independent on
the height of the actual barrier �E—in strong contrast both
to standard LD simulations [where tsim ∼ exp(�E/kBT )] and
FFS methods (tsim ∼ �E ).

Moreover, our method does suffer from the instability
problem arising in FFS, energy bounce, and other multistage
algorithms due to the presence of the product of numerically
computed transition probabilities, as explained in detail in
the Introduction. Computation of the probability product ratio
r (6) in our method is error free, so that this instability is
completely absent.

Summarizing, our algorithm consists of the following
stages:

(s1) Compute the energy barrier �E between the basins A
and B and divide the path between them into N states with the
energy differences δE between them.

(s2) Set the energy-dependent temperature (1).
(s3) Using this T (E ) dependence, assign the one-step hop-

ping probabilities {pi} and {qi} between the states according
to Eqs. (9) and (10).

(s4) For each state i, build the transition matrix P̂i+1 given
by Eq. (7) for the corresponding Markov chain.

(s5) Compute the total EDT transition probabilities
as matrix elements wEDT

i→i+1 = E (i+1)
i,i+1 , where Ê(i+1) =

limk→∞(P̂(i+1))k using the diagonalization of matrices
P̂(i+1).

(s6) Repeat steps (s3)–(s5) for the constant temperature
T = Troom to obtain the probabilities wCT

i→i+1.
(s7) Perform LD simulations for the EDT case and com-

pute the EDT switching time τEDT
sw in a standard way.

(s8) Perform LD simulations for T = Troom and T = Tlrg

to compute the corresponding fluxes �CT
0 and �EDT

0 out of the
basin A.

(s9) Compute the real switching time (for the constant
temperature) τCT

sw using Eq. (5).
We emphasize once more that the only really time-

consuming step in this algorithm is step (s7), where an
accurate statistics of the switching events for the system with
EDT should be collected.

V. PHYSICAL RESULTS AND COMPARISON OF EDT
WITH FFS

To demonstrate the high accuracy of our algorithm and
to quantitatively compare the simulation time for determi-
nation of the switching rate in the EDT paradigm with the
corresponding time required by FFS, we have simulated with
both methods the same series of macrospins with the biaxial
anisotropy as analyzed in [35]: with magnetic parameters
as for Permalloy (magnetization M = 800 G, damping λ =
0.01) and demagnetizing factors of flat nanoellipses with the
thickness h = 3 nm, short axis b = 40 nm, and long axes a
varying from 50 to 100 nm. Corresponding energy barriers
are in the range 9 � �E/kBT � 60, so that switching times
for these macrospins cover approximately 20 orders of mag-
nitude.

As shown in Fig. 9, our method demonstrates an excellent
agreement with FFS simulations in the whole range of en-
ergy barriers. We note that when only τsw(�E ) dependencies
obtained with various methods are plotted [Fig. 9(a)], some
discrepancies can be masked by the strong exponential term
necessarily present in all methods. For this reason, in Fig. 9(b)
we have displayed the ratios of the FFS and EDT switching
times to the analytical result obtained for the same biaxial
macrospins in our previous paper [35] (the latter result was
derived basing on the advanced formalism outlined in [20]).
This comparison, where the term exp(�E/kBT ) is canceled
out, clearly demonstrates a very good agreement between out
EDT formalism and the standard FFS method.

Finally, to compare the performance of our algorithm
and the FFS method, we have determined simulation times
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FIG. 9. Switching times computed by the standard (T = const.)
FFS method (red open circles) compared to the same times obtained
via EDT. An excellent agreement between both methods is clearly
demonstrated.

required to compute τsw with the relative accuracy ε = 5%
with both methods. Results of this comparison plotted in
Fig. 10 confirm our conclusions drawn above. Namely, the
FFS simulation time growth is approximately linear with the
barrier height �E , because the time required to compute each
probability wi is approximately the same for each interface,
and the required number of interfaces grows linearly with
�E . For our EDT algorithm, simulation time even decreases
somewhat when the barrier increases, because for higher bar-
riers the temperature Tlrg should be higher to ensure the same
values of the probability p(Ecool ) (see Sec. II A), so that the

FIG. 10. Computation times (a) and speedup of the EDT method
as compared to FFS. In both methods, LD with the constant time step
�t = 0.001 was used to achieve the relative accuracy of 5% for τsw.

number of transitions over the barrier per unit time in EDT-LD
simulations also increases. Thus we need smaller simulation
time to obtain the statistics of the same quality.

The speedup of the EDT algorithm compared to FFS is
shown in Fig. 10(b): the break point is achieved already for
a very moderate barrier �E/kBT ≈ 20, and for the highest
studied value �E/kBT ≈ 60 our method is more the 40×
faster than FFS.

Finally, we point out that our method allows a straight-
forward generalization to systems with an arbitrary number
of degrees of freedom, in particular, to strongly interacting
many-particle systems and discrete models of continuous bod-
ies (like full-scale micromagnetics). In the sequence of steps
listed at the end of Sec. IV only the evaluation of the energy
barrier �E (s1) and LD simulations (s7) and (s8) are system
specific, all other steps do not require any additional adjust-
ments. The energy barrier between two metastable states of
interest is always needed. For systems where it cannot be
found analytically—as it would be the case in the majority of
applications—this task can be accomplished using one of nu-
merical methods listed in the Introduction (e.g., the “nudged
elastic band” method which is widely used for this purpose
for a large variety of systems). Based on the value of this
energy barrier, we can then define a suitable energy-dependent
temperature in the form given by the Eq. (1). Lastly, LD
simulations should be readily available for any system, as they
require only the knowledge of forces acting on the system
particles (or torques acting on magnetic moments).

VI. CONCLUSION

In this paper we have introduced the concept of the energy-
dependent temperature (EDT), which allows us to simulate
transitions over arbitrarily high energy barriers by single-
stage Langevin dynamics simulations. Our method has been
verified on the example of a biaxial magnetic macrospin—the
archetypal magnetic system with two energy minima and two
equivalent saddle points—where our results agree very well
with switching times obtained via the forward flux sampling
(FFS). We have shown that the computation time for the
EDT-based LD simulations does not increase with the en-
ergy barrier height, in contrast to FFS and other “climbing”
methods, thus providing a unique possibility to simulate tran-
sitions over any barrier with a very moderate numerical effort.
The speedup of our LD-EDT method in comparison with
the (strongly optimized) FFS algorithm achieves 40× for the
energy barrier of ≈60kBT . Furthermore, the presented EDT-
LD algorithm does not require the evaluation of the product
of a large number of conditional probabilities for transitions
between subsequent interfaces as in FFS and related methods
(like “energy bounce,” etc. [35]) and thus does not suffer
from the stability problem arising due to this procedure in the
presence of any systematic error occurring by the computation
of these probabilities.
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