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Abstract--The most straightforward method to simulate fast

switching in magnetic systems is the solution of stochastic equa-
tions of motion for magnetic moments (Langevin dynamics), whe-
re thermal fluctuations are taken into account by the thermal
(random) field Hfl.

In this paper we address first an important methodical prob-
lem of this formalism: the choice of the stochastic calculus (Ito or
Stratonovich). We prove that both Ito and Stratonovich stochastic
integrals give identical results, despite the multiplicative noise
present in the stochastic Landau-Lifshitz-Gilbert equation. Dis-
cussing correlation properties of Hfl (which is usually assumed to
be δ-correlated both in space and time), we point out that finite
correlation time and radius of this field can be due not only to
physical reasons (heat-bath correlations), but can also arise from
the finite-element representation of the continuous problem.

Afterwards we present simulation results concerning the influ-
ence of thermal fluctuations on the fast switching of magnetic na-
noelements. We consider three typical situations: (i) thermal noise
influence on the switching which would happen also in the absen-
ce of thermal fluctuations (thermally assisted switching), (ii) ther-
mally induced switching of the metastable states and (iii) chan-
ging of the switching mode as the consequence of thermal fluc-
tuations.

Index Terms— fast switching, Langevin dynamics, magnetic
nanoelements,  thermal noise.

I. INTRODUCTION

Simulation of fast switching processes in magnetic systems
is at present one of the hot topics in applied magnetism in ge-
neral and in micromagnetics in particular. Decreasing read-
write times require exhaustive understanding of corresponding
remagnetization processes which happen on the nanosecond
(and shorter) time scales. Rapidly increasing storage density of
classical media and introduction of novel storage technologies
like MRAM results in the increasing role of thermal effects
which must be taken into account explicitly.

Among various methods used for studying of fast magneti-
zation switching taking into account thermal fluctuations the
Langevin dynamics is probably the most straightforward and
reliable one. In this formalism the stochastic (Langevin) equa-
tions of motion for magnetic moments are solved, which
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allows to take into account (i) all relevant magnetic interac-
tions (thus ensuring proper simulation of collective remagneti-
zation modes), (ii) dynamic effects which do not influence the
system energy and thus can not be included in Monte-Carlo
simulations (magnetic moment precession) and (iii) thermal
fluctuations using the fluctuation (random) field Hfl added to
the deterministic effective field Hdet.

In this paper we address some general problems concerning
such Langevin dynamic simulations. The paper is organized as
follows. In Sec. II we discuss an important issue concerning
the choice between Ito and Stratonovich interpretations of sto-
chastic differential equations (SDE). We prove that for stan-
dard micromagnetic models both Ito and Stratonovich stochas-
tic calculus lead to identical and physically correct results. In
Sec. III discretization effects which have important consequen-
ces for dynamical simulations even without thermal noise are
considered. Simulation results concerning the influence of
thermal fluctuations on fast switching of magnetic nanoele-
ments are presented in Sec. IV. Here we discuss also the
choice and justification of the random field correlation proper-
ties and analyze several situation where thermal noise effects
lead not only to quantitative changes, but also to qualitatively
different remagnetization processes.

II. LANGEVIN DYNAMICS IN MICROMAGNETICS:
EQUIVALENCE OF THE ITO AND STRATONOVICH STOCHASTIC

CALCULUS

A. A Brief Introduction to the Problem
Stochastic differential equation (SDE) which is usually solv-

ed in micromagnetics is the Landau-Lifshitz-Gilbert equation
[1] for the magnetic moment motion

det fl det fl[ ( )] [ [ ( )]]i
i i i i i i i

i

d
dt �

γλγ= − × + − × × +
�

� H H � � H H    (1)

Here the precession constant � is equal to the gyromagnetic
ratio γ0 in the small damping λ << 1. The deterministic effecti-
ve field Hi

det acting on the i-th magnetic moment µµµµi includes all
the standard micromagnetic contributions (external, anisotro-
py, exchange and magnetodipolar interaction fields). Thermal
noise is taken into account via the fluctuation (Langevin) field
Hi

fl. In the simplest approximation its Cartesian components
are assumed to be δ-correlated Gaussian random variables [1]

fl fl fl
, , ,0,      (0) ( ) 2 ( )i i j ijH H H t D tξ ξ ψ ξψδ δ δ� � = � ⋅ � = ⋅        (2)
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(here i, j are the moment indices and �, � = x, y, z). The noise
power D=(λ/1+λ2)�(kT/γµ) can then be evaluated from the
fluctuation-dissipation theorem [2, 3].

Stochastic LLG-equation (1) does not (see below) automati-
cally conserve the moment magnitude µ  (in contrast to its de-
terministic counterpart). However, in standard micromagnetic
approach µ  must be kept constant, which has important conse-
quences both for the solution of (1) (see Sec. B) and for the
temperature region where the Langevin approach is valid: si-
mulation temperature should be well below the Curie point Tc.

Introducing the unit moment vector m = µµµµ/(MS�∆V) (MS be-
ing the material saturation magnetization and ∆V - a discretiza-
tion cell volume), the reduced magnetic field h = H/MS, and
the reduced time � = t��MS, we can rewrite (1)  as

eff fl eff fl[ ( )] [ [ ( )]]i i i i i i i iλ= − × + − ⋅ × × +m m h h m m h h�   (3)

Lacking the space, we can not discuss here neither the ques-
tion whether this equation is a generally best choice nor how to
choose the damping λ (see an interesting discussion in [4 - 6]).

The first important problem by the solution of SDE’s like
(1) or (3) is that they can not be interpreted as usual differen-
tial equations. This can be easily demonstrated using the
simplest SDE describing a particle motion in a viscous
medium in the presence of thermal fluctuations

det L( ) ( , ) ( )x F t a x t tη ξ= + ⋅� (4)
Here � is the particle friction coefficient, Fdet - the determinis-
tic force. The reduced thermal force �L is normally assumed to
be a random Gaussian variable with correlations as in (2):

( ) 0,       (0) ( ) 2 ( )t t D tξ ξ ξ δ� � = � ⋅ � = ⋅            (5)
with the fluctuation power D ~ T. The ‘good’ function a(x,t)
shows that the noise characteristics may be coordinate- and
time-dependent.

An attempt to integrate (4) as a usual differential equation
unavoidably leads to an integral of the type

0
( ) ( )

t
W t t dtξ ′ ′= ⋅�

From (5) it can be easily deduced that W(t) is the so called
standard Wiener process [7] which is not differentiable. So the
derivative dW/dt = �(t) does not exist and hence in the usual
sense the equation (5) including �(t) does not exist also.

A rigorous method to assign a correct meaning to the rela-
tions like (4) and (1) is based on the introduction of the Wie-
ner process differential dW = �(t)dt. Using dW, we can define
integrals containing this differential

( , ) ( )I a x t dW t= ⋅�
analogously to the standard Riemann-Stieltjes integrals as the
limit (in the mean square sense) of corresponding partial sums

1
1 1

lim ( ( ), ) lim [ ( ) ( )]
n n

i i i i i i
n ni i

I a x W a W t W tτ τ −
→∞ →∞= =

= ∆ ≡ −� � (6)

The points �i where the values of the integrand are evaluated
lie, as usual, somewhere inside the interval [ti-1, ti]. The prob-
lem is that not only the values of partial sums, but the limit (6)
itself depends on the choice of intermediate points �i (see [7],
Chap. 3 for a simple but impressive example). This fact is in a

heavy contrast to the standard analysis where the independen-
ce of the limit of Darbu sums on the intermediate point choice
is one of the cornerstones by building the integral calculus.

The only way to cope with this problem is to introduce stan-
dard choices for intermediate points and to find the best one
from the statistical physics point of view. Currently there exist
two such choices: (i) intermediate points �i = ti-1 coinciding
with the beginning of the intervals lead to the Ito stochastic in-
tegral and (ii) �i = (ti-1 + ti)/2 lying in the middle of the intervals
result in the Stratonovich stochastic calculus.

It is well known that Ito and Stratonovich interpretations of
SDE’s lead to different solutions if the noise is multiplicative -
i.e., the random term is multiplied by some function of the
system variables. In this case usually the Stratonovich inter-
pretation provides physically correct results, recovering, e.g.,
important properties of physical random processes obtained
with more general methods [7].

B. Equivalence of the Ito and Stratonovich Stochastic
Calculus for Models with Constant Moment Magnitudes
The noise in the Langevin equation (1) is multiplicative - due

to the vector products the projections of the random field Hfl

are multiplied by the magnetic moment projections. This fact
was noticed already in the pioneering paper of Brown [1] who
suggested to use the Stratonovich interpretation of (1).

The question was raised again in the last decade when nume-
rical simulations using (1) became available and many rese-
arch groups started to perform Langevin dynamics studies of
remagnetization processes in various systems (see [2, 8-12],
etc). For such simulations the choice of the stochastic calculus
is of primary importance, because different numerical methods
converge to different stochastic integrals: The Euler scheme
and simple implicit methods converge to the Ito solution, Heun
and Milstein schemes are known to converge to the Stratono-
vich limit [13] and Runge-Kutta (RK) schemes can converge
to anything (including the in-between cases) depending on
their coefficients [14]. Most authors [2, 9, 10] and commercial
micromagnetic packages [15, 16] use Heun and RK methods
converging to the Stratonovich solution, but several groups
employ the Ito-converging Euler [8, 11] and implicit schemes
[12]. The last two papers were seriously criticized in [2] where
it has been claimed once again that only the Stratonovich inter-
pretation ensures the physically correct solution of (3).

In this subsection we shall prove that for the SDE’s (1)-(3)
there is no difference between the Ito and Stratonovich inter-
pretations if the magnitude of magnetic moments is assumed to
be constant. This is the case in the overwhelming majority of
magnetic models including (but not limited to) classical Hei-
senberg and RKKY models, in models of single-domain mag-
netic particle systems [17, 18] and in standard micromagnetics
[19] (which is most relevant for our purposes).

First we note that the fluctuation field in the dissipation term
on the right-hand side of (3) can be omitted; although the par-
ticular realizations of system trajectories will be different then,
the average system properties (the only being of practical inte-
rest) remain the same if the noise power D is rescaled corres-
pondingly [2, 3]. Thus we can restrict ourselves to the study of
a simpler stochastic equation
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eff fl[ ( )]i i i i= − × +m m h h� (7)
Next we make use of the well known fact [20], that if one

adds to the system of stochastic ODE's
( , )i i ik kk

x A t B ξ= +�x� (8)

the deterministic drift term ( / )jk ik jjk
B B x∂ ∂� , then the Ito

solution of this modified system is equivalent to the Stratono-
vich solution of the initial system (8). Comparing (8) with the
LLG-system (7), we can see that in our case the matrix B is

ik ijk jj
B D mε= � , so that the above mentioned drift  reduces

to dmi/dτ = –2Dmi.
This drift is directed along the magnetic moment mi thus

trying to change its magnitude which is forbidden by the mo-
del. For this reason this term must be discarded which means
that for stochastic dynamics of models with rigid dipoles (with
constant magnitudes) there is no difference between the Ito
and Stratonovich solutions of such stochastic ODE's.

The mathematical reason for this equivalence is that Carte-
sian coordinates of magnetic moments are not independent due
to the condition |m| = 1. Independent variables are spherical
coordinates (θ,φ) of m. After transition to these coordinates the
stochastic part of (7) which we have to analyze reads [1,3]

f f,              / sinl lh hϕ θθ ϕ θ= = −� �

(we have omitted the moment index i for simplicity), so that
the matrix B responsible for the drift mentioned above is

0 1
1/ sin 0

B B
B

B B
θθ θϕ

θϕ ϕϕ θ
� � � �

= =� � � �� � −	 
	 

It is straightforward to verify that the corresponding drift is

exactly zero: ( / ) 0jk ik jjk
B B x∂ ∂ =�  (here i,j,k = 1,2 and x1 =

θ, x2 = φ). Hence we arrive at the same result that Stratonovich
and Ito stochastic integrals are equivalent in this case. Numeri-
cal examples supporting this conclusion can be found in [21].

There exist an opposite statement made in [2] which is ba-
sed on the usage of the Fokker-Planck equation (FPE) for the
evolution of the probability distribution of the magnetization
orientation P(m,t). In FPE derived from the Ito version of the
Langevin equation an additional drift term �(mP)/�m arises
when compared with the Stratonovich case (see p.14940 in
[2]). However, because Cartesian coordinates of m are not
independent, one can not use the FPE written in these coordi-
nates to compare Ito and Stratonovich without introducing the
restriction |m| = 1 explicitly. In particular, the additional drift
term �(mP)/�m in the Ito interpretation of FPE should be
omitted because it leads to the drift of the probability density
along the magnetization vector. This can be clearly seen after
transition to spherical coordinates (m, θ, φ ) of m where this
drift term reduces to �(mP)/�m, thus trying to change the
moment magnitude, which is forbidden by the model.

We note in passing that by numerical solution of (7) Carte-
sian coordinates are often preferred, because no instabilities
present in spherical coordinates near the polar axis can occur.
During such simulations one has to normalize the moment vec-
tor mi after each integration step (and also by evaluating the

derivatives at the intermediate points) in order to conserve the
moment magnitude thus restoring the equivalence of the two
stochastic integrals discussed above.

III. DISCRETIZATION EFFECTS IN DYNAMIC MICROMAGNETIC
SIMULATIONS

In this section we turn our attention to the influence of disc-
retization effects (finite-element representation of the continu-
ous problem) on the dynamic switching behaviour of magnetic
nanoelements in numerical simulations.

To study these effects we have chosen a relatively simple
and well defined problem. We consider a dynamic switching
of a thin nanoelement with lateral sizes Lx x Lz = 400 x 600 nm
and thickness h = 5 nm. The 0xz-plane of our coordinate sys-
tem lies in the element plane and the 0x-axis is directed hori-
zontally relative to images shown in the figures. To avoid un-
controllable effects due to the random grain anisotropy and the
polycrystalline sample structure discretization, we have set this
anisotropy to zero leaving only a shape anisotropy. Other mag-
netic parameters of the element are: saturation magnetization
MS = 1000 G and exchange stiffness constant A = 10-6 erg/cm.

We have simulated the switching of such an element integ-
rating the LLG equation (3) using an optimized Bulirsch-Stoer
algorithm with the adaptive step-size control. We start from
the S-type remanent state (see first gray-scale image in Fig. 1)
applying at t = 0 the external field H = Hzez with Hz = – 200
Oe; this field is well beyond the corresponding quasistatic
switching field which for this problem was calculated to be
Hsw � –  80 Oe.  To study the discretization effects only we
have excluded the thermal noise influence by setting the tem-
perature T to zero. Simulations were done for five sequentially
refined grids with the same (1:1) aspect ratio of the grid cells:
Nx x Nz = 40 x 60, 60 x 90, 80 x 120, 120 x 180, 200 x 300.

t γMS
0 10 20 30 40 50 60

mx, y , z

-1.0

-0.5

0.0

0.5

1.0 mx
my
mz

mz

Fig. 1 Switching of a thin rectangular ‘soft’ magnetic element (400 x 600 x 5
nm) with a low damping (λ = 0.01) in a negative field Hz = –200 Oe starting
from the S-type remanent state

First we discuss results for the most interesting low damping
case. The switching progress for to λ = 0.01 is shown in Fig. 1
as time dependencies of all magnetization components and mz-
gray-scale maps for several time moments (discretization Nx x
Nz = 120 x 180). The switching starts with the reversal of clo-
sure domains near the short element borders. The subsequent
reversal of the central domain is accompanied by the strong
oscillation effects due to a low dissipation so that its magne-
tization direction changes several times during the relaxation.
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The reversal of narrow domains near the long sides completes
the remagnetization.

To characterize the importance of the discretization effects
we have compared results for several grids listed above. In
Fig. 2 we present corresponding mx(t)-dependencies, because
in our geometry the influence of the discretization effects can
be most clearly seen on this projection.

t γMS

10 20 30 40 50

mx

-0.2

0.0

0.2

0.4

0.6

0.8
Nx x Nz = 40 x 60

Nx x Nz = 60 x 90

Nx x Nz = 120 x 180

Nx x Nz = 200 x 300

mx

mx

Fig. 2  mx time dependencies for the switching process shown in Fig. 1 simu-
lated using various grids

The main conclusion which can be immediately drawn from
the analysis of Fig. 2 is that the remagnetization curves do not
converge to any limiting curve up to the finest grid simulated
(Nx x Nz = 200 x 300). The effect is even qualitative, as it can
be seen from the comparison of final states (mx-gray-scale
maps on the right in Fig. 2) for all discretizations Nx x Nz �
120 x 180 and for Nx x Nz = 200 x 300.

This discrepancy can not be attributed to an insufficient dis-
cretization of the interaction (energy) terms. First of all, alrea-
dy for a moderate grid 80 x 120 the cell sizes ∆x = ∆z = 5 nm
are two times smaller than our characteristic micromagnetic
length ldem = (A/MS

2)1/2 = 10 nm, so that further grid refinement
should lead to a fast convergence of results. Second, we have
verified which discretization is sufficient for the solution of
quasistatic problems by simulating corresponding hysteresis
loops: starting from the grid Nx x Nz = 60 x 90 such loops did
not change (in frames of the computer accuracy) when the grid
was refined further.

The reason for a significant modification of the switching
process by the grid refinement is a strong influence of magne-
tic excitations with a short wavelength. The non-linear (due to
the double vector product) dissipation term in the LLG equa-
tion leads to the generation of excitations with shorter wave-
lengths when the long-wave magnons decay. These short-wave
excitations produce magnons with still smaller wavelength etc.
A given grid is obviously unable to support excitations with a
wavelength smaller than its cell size. Hence such a can not
provide adequate picture of the switching process starting from
the time moment when such short-wave excitations start to
play an important role.

To support this conclusion, we have plotted in Fig. 3 the dif-
ferences between mx(t)-dependencies for two subsequent grid
refinements. It can be seen, that for finer grids these differen-
ces start to diverge later (proving that we are dealing with a
purely dynamical effect). This means that on a given lattice dy-
namical simulations are valid up to a certain maximal time, af-
ter which the effect of short-wave fluctuations not supported

by this lattice becomes important. For maximal allowed diffe-
rence δmax = 0.05 between the average magnetization projec-
tions the arrows under the time axis in Fig. 3 show the maxi-
mal allowed simulation duration for the given discretizations.

t γMS

0 5 10 15 20 25 30

∆mx

0.00

0.05

0.10

0.15
| m40x60 - m60x80 |
| m60x80 - m80x120 |
| m80x120 - m120x180 |
| m120x180 - m200x300 |

Fig. 3. Differences between mx(t)-dependencies for two subsequent grid refi-
nements as indicated in the legend. Arrows indicate the maximal allowed si-
mulation time for corresponding grids when the maximal allowed error
threshold is set to δ = 0.05.

t γMS
5 10 15 20 25 30
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-0.5

0.0
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1.0
mx (disc. 80 x 120)

mz (disc. 80 x 120)

mx (disc. 60 x 90)

mz

Fig. 4 Switching of the same element as shown in Fig. 1, but for with a
moderate damping (λ = 0.1). No differences between the switching processes
for progressive grid refinements could be observed

For systems with larger dissipation the discretization effect
demonstrated above may be absent due to a much smaller de-
cay times of the short-wave magnons. For this reason they may
not play any significant role by the switching process. This is
demonstrated in Fig. 4 where results of the same simulations as
above, but for λ = 0.1 are presented. No noticeable changes in
the behaviour of any magnetization projection could be detec-
ted starting from the discretization Nx x Nz = 60 x 90.

IV. THERMAL NOISE INFLUENCE ON THE SWITCHING
DYNAMICS OF NANOLELEMENTS

A. Correlation Properties of a Random Noise
Another very important methodical question is the establish-

ment of correlation properties of the random field Hfl. Up to
our knowledge, virtually all papers dealing with stochastic
micromagnetic simulations use the simplest approximation gi-
ven by (2). However, one should  keep in mind that this formu-
lae were derived, strictly speaking,  for thermal fluctuations of
a magnetic moment of a single and absolutely single-domain
particle [1] for time intervals much larger than characteristic
times of heat bath correlations.
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For this reason it is clear that for stochastic simulations of
micromagnetic problems, where one deals with complicate
systems with several interaction types and on very different
time scales, correlation properties (2) should be revised. The
first obvious situation, when such a revision is necessary, is the
switching on the time scale compared with the heat bath corre-
lation times which are usually estimated to lie in the picose-
cond region [1-3]. However, such ultrafast switching processes
are, at least at present, not the mainstream research subject, so
we shall not discuss this case further.

Another by far more important reason for non-trivial correla-
tions present in the random field components is the discreti-
zation of the continuous problem itself. Namely, as it was men-
tioned in Sec. III, the given grid is unable to support excita-
tions with the wavelength smaller than the grid cell size. From
the point of view of thermal fluctuations this means that cor-
responding thermal magnons can not be included into simu-
lations explicitly. Such short-wave magnons may still have the
mean free path much larger than the cell size, thus leading to
substantial time and space correlations of the random field
acting on magnetic moments of the simulation lattice. This cir-
cumstance would first modify the δ-functional time and space
correlation properties (2) of the random noise. The second
effect would be the modification of the random noise power
given by the coefficient D in (2), because the latter should inc-
lude all the internal degrees of freedom which the lattice cell
magnetization might possess. Neglecting these internal excita-
tions leads to the underestimation of the noise power and to its
incorrect dependence on the cell size (as ∆V-1).

At present we are not able to give a correct quantitative des-
cription of the effects mentioned above, so we shall use in the
simulations presented below the simplest ansatz (2). However,
one should clearly understand that after retrieving correct cor-
relation properties of the random noise we expect at least sub-
stantial quantitative corrections to the switching behaviour ob-
tained within this simplest approximation.

B. Thermally Assisted Switching
If the switching would take place without thermal noise also

(like the process shown in Fig. 1) then thermal fluctuations
mostly do not cause any qualitative changes in the switching
process. They lead to (i) its acceleration due to the more effici-
ent dissipation of the system energy and - for the same reason -
(ii) to additional damping of magnetization oscillations. In this
case we speak about a thermally assisted switching

C. Thermally Induced Switching
If in the absence of thermal noise a magnetization state is

metastable and hence would not decay by itself, its switching
may be caused by thermal fluctuations. A typical example of
such a process is shown in Fig. 5 and 6 (note the break on the
t-axis !), where we have used the magnetic element with the sa-
me geometry and magnetic parameters as in previous examp-
les. Starting from the S-type remanent state, we have calcula-
ted the metastable static equilibrium  state in the negative field
Hz = – 77 Oe, which magnitude is slightly smaller than the
switching field magnitude for this case (Hz

sw = 79.5 ± 0.5 Oe).
Afterwards we have switched the temperature on, keeping

the external field constant. After the initial ‘heating’ (which

can be seen in Fig. 6 as the fast increase of all energy contribu-
tions) the system reaches thermal equilibrium inside the energy
minimum corresponding to this metastable state and remains in
this minimum till τ  � 80. Then a thermally induced transition
to a more stable state with 0zm� � < occurs. Corresponding
time moment obviously depends on the noise realization, but
the average transition time is uniquely determined by the
initial magnetization configuration and the external field.

t γMS
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mxmz
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mz1

2

3

Fig. 5. Thermally caused switching of a nanoelement with the same geometric
and magnetic parameters as in previous examples in the external field Hz = –
77 Oe (which magnitude is smaller than the switching field)

It is interesting to note that this thermally induced transition
occurs via three well defined states shown as 1, 2 and 3 in Fig.
5 and marked with vertical dashed lines in Fig. 6, where the
energy time dependence during the transition is shown. The
first and third states provide local maxima to the exchange
energy (due to two sharp vertical 180o domain walls in state 1
and a long zigzag � 90o wall in state 3), being at the same time
local minima for the stray field energy. The 2nd state, in cont-
rast to them, minimizes the exchange energy (almost no doma-
in walls), but has a maximal demagnetizing energy because
magnetization along the vertical element sides is oriented near-
ly perpendicular to them, creating large ‘magnetic charges’.
This sequence of intermediate states was observed for all reali-
zations of the transition studied here, irrespective of the transi-
tion time and the external field value.

t γMS

0 20 80 100 120 140

E, r.u.

0

100
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400

Etot 

Edem 

Eexch 

1
2

3

Fig. 6 Energy dependence during the magnetization relaxation shown in Fig.
5. States marked with vertical dashed lines correspond to those which
magnetization configuration is shown in Fig. 5 using gray-scale maps.

D. Thermal Noise Influence on the Switching Mode
Another important effect of a thermal noise which may quali-

tatively influence a switching process is a change of the swit-
ching mode.
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A simple situation when it takes place is demonstrated in Fig.
7 and 8.  If we simulate at T = 0 the reversal of the same
nanoelement as considered above, but starting from the flower
remanent state (Fig. 7), we will find that the in this case the
negative field Hz = – 200 Oe is unable to switch the element
completely due to the very unfavorable switching mode. Na-
mely, the four growing edge domains form nearly 360o-domain
walls along the two rectangle symmetry axes, so that a much
higher field would be necessary to destroy this walls and
switch the element completely.

t γMS

0 10 20 30 40 50 60
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0.0

0.2

0.4

0.6

0.8

1.0

T = 0

Fig. 7 Switching of the same element as shown in Fig. 1, but starting from the
flower remanent state at T = 0. Note that the negative field Hz = -200 Oe is
insufficient to switch the element completely

When simulating the switching process starting from the sa-
me flower state, but at a finite temperature (see Fig. 8, where T
= 300), a completely different process takes place. During the
thermal equilibration of the system (τ < 20) the relatively un-
stable symmetric flower state is converted to the S-type rema-
nent state (spontaneous symmetry breaking due to thermal
fluctuations). When the negative field Hz = – 200 Oe is then
switching on at τ  = 20, a fast switching of this state occurs in
the same way as shown in Fig. 8.

t γMS

0 10 20 30 40 50 60

mz

-1.0

-0.5

0.0

0.5

1.0

mx mx

mx

mzmzmx mx

T = 300 K

Fig. 8 The switching process for the same element as shown in Fig. Sw_T0,
but for the temperature T = 300 K. The negative field Hz = -200 was
switching on after the equilibrium state has been reached. See text for detail.

V. CONCLUSION

From the examples presented above it should be clear that
numerical simulations using the Langevin dynamics formalism
are a powerful tool for investigation of fast magnetic swit-
ching. However, it should be also clear that obtaining quanti-
tatively correct results – actually the main goal of such simula-
tions – is impossible without proper understanding of all the

discretization effects, which are important for simulations both
with and without thermal fluctuations.
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